These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29947228)

  • 21. Highly Sensitive NH
    Zhang L; Tan Q; Kou H; Wu D; Zhang W; Xiong J
    Sci Rep; 2019 Jul; 9(1):9942. PubMed ID: 31289292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colorimetric Paper Sensor for Food Spoilage Based on Biogenic Amine Monitoring.
    Calabretta MM; Gregucci D; Desiderio R; Michelini E
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Sensitive and Contactless Ammonia Detection Based on Nanocomposites of Phosphate-Functionalized Reduced Graphene Oxide/Polyaniline Immobilized on Microstrip Resonators.
    Tanguy NR; Wiltshire B; Arjmand M; Zarifi MH; Yan N
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9746-9754. PubMed ID: 31995354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Concentration profiles of putrescine and cadaverine in inoculated vacuum packed beef].
    Slemr J; Ritter G
    Z Lebensm Unters Forsch; 1984 Oct; 179(4):305-7. PubMed ID: 6438939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Room Temperature Ammonia Gas Sensor Based on p-Type-like V
    Van Duy L; Nguyet TT; Le DTT; Van Duy N; Nguyen H; Biasioli F; Tonezzer M; Di Natale C; Hoa ND
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis.
    Singh H; Singh G; Kaur N; Singh N
    Biosens Bioelectron; 2022 Jan; 196():113687. PubMed ID: 34649095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meat quality assessment using Au patch electrode Ag-SnO
    Senapati M; Sahu PP
    Food Chem; 2020 Sep; 324():126893. PubMed ID: 32344336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid Atmosphere.
    Mateos M; Tchangaï MD; Meunier-Prest R; Heintz O; Herbst F; Suisse JM; Bouvet M
    ACS Sens; 2019 Mar; 4(3):740-747. PubMed ID: 30773874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Irreversible Spoilage Sensors for Protein-Based Food.
    Liu B; Gurr PA; Qiao GG
    ACS Sens; 2020 Sep; 5(9):2903-2908. PubMed ID: 32869625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases.
    Barandun G; Soprani M; Naficy S; Grell M; Kasimatis M; Chiu KL; Ponzoni A; Güder F
    ACS Sens; 2019 Jun; 4(6):1662-1669. PubMed ID: 31066550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-destructive detection of fish spoilage using a wireless basic volatile sensor.
    Bhadra S; Narvaez C; Thomson DJ; Bridges GE
    Talanta; 2015 Mar; 134():718-723. PubMed ID: 25618727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Color Measurement and Analysis of Fruit with a Battery-Less NFC Sensor.
    Lazaro A; Boada M; Villarino R; Girbau D
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30979009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure Measurement-Based Method for Battery-Free Food Monitoring Powered by NFC Energy Harvesting.
    Nguyen TB; Tran VT; Chung WY
    Sci Rep; 2019 Nov; 9(1):17556. PubMed ID: 31772253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO
    Zhang D; Yu S; Wang X; Huang J; Pan W; Zhang J; Meteku BE; Zeng J
    J Hazard Mater; 2022 Feb; 423(Pt B):127160. PubMed ID: 34537639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Synthetic Biosensor for Detecting Putrescine in Beef Samples.
    Selim AS; Perry JM; Nasr MA; Pimprikar JM; Shih SCC
    ACS Appl Bio Mater; 2022 Nov; 5(11):5487-5496. PubMed ID: 36356104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Determination of biogenic amines by RP-HPLC for monitoring the microbial spoilage of poultry].
    Schmitt RE; Haas J; Amadò R
    Z Lebensm Unters Forsch; 1988 Aug; 187(2):121-4. PubMed ID: 3223088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 degrees C: possible role of biogenic amines as spoilage indicators.
    Balamatsia CC; Paleologos EK; Kontominas MG; Savvaidis IN
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):9-17. PubMed ID: 16528580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trace-Level, Multi-Gas Detection for Food Quality Assessment Based on Decorated Silicon Transistor Arrays.
    Yuan Z; Bariya M; Fahad HM; Wu J; Han R; Gupta N; Javey A
    Adv Mater; 2020 May; 32(21):e1908385. PubMed ID: 32285547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Enhanced Multiplication of RF Energy Harvesting Efficiency Using Relay Resonator for Food Monitoring.
    Cao XT; Chung WY
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31027382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of cadaverine from putrescine, histamine and polyamines in rat kidney by phosphocellulose chromatography.
    Furuta H; Yamane T; Sugiyama K
    J Chromatogr; 1985 Jan; 337(1):103-9. PubMed ID: 3980637
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.