These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 29947593)

  • 1. The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates.
    Quick KM; Mischel JL; Loughlin PJ; Batista AP
    J Neurophysiol; 2018 Nov; 120(5):2164-2181. PubMed ID: 29947593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics.
    Quick KM; Card NS; Whaite SM; Mischel J; Loughlin P; Batista AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2589-92. PubMed ID: 25570520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efferent controls in crustacean mechanoreceptors.
    Cattaert D; Le Bon M; Le Ray D
    Microsc Res Tech; 2002 Aug; 58(4):312-24. PubMed ID: 12214298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward estimation of movement state in posterior parietal cortex.
    Mulliken GH; Musallam S; Andersen RA
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8170-7. PubMed ID: 18499800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus.
    Sparks DL
    Physiol Rev; 1986 Jan; 66(1):118-71. PubMed ID: 3511480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel processing of internal and external feedback in the spinocerebellar system of primates.
    Cohen O; Harel R; Aumann TD; Israel Z; Prut Y
    J Neurophysiol; 2017 Jul; 118(1):254-266. PubMed ID: 28381489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm.
    Raveh E; Friedman J; Portnoy S
    Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An overview of neural function and feedback control in human communication.
    Hood LJ
    J Commun Disord; 1998; 31(6):461-9; quiz 469-70; 553. PubMed ID: 9836135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internalizing agency of self-action: perception of one's own hand movements depends on an adaptable prediction about the sensory action outcome.
    Synofzik M; Thier P; Lindner A
    J Neurophysiol; 2006 Sep; 96(3):1592-601. PubMed ID: 16738220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback.
    Dideriksen JL; Negro F; Farina D
    J Neurophysiol; 2015 Sep; 114(3):1895-911. PubMed ID: 26203102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.
    Asher DE; Oros N; Krichmar JL
    PLoS One; 2015; 10(8):e0134669. PubMed ID: 26252871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal sensorimotor transformations for balance.
    Lockhart DB; Ting LH
    Nat Neurosci; 2007 Oct; 10(10):1329-36. PubMed ID: 17873869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional anatomy of thalamus and basal ganglia.
    Herrero MT; Barcia C; Navarro JM
    Childs Nerv Syst; 2002 Aug; 18(8):386-404. PubMed ID: 12192499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.