These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29947633)

  • 1. UV-visible photocurrent enhancement using metal-semiconductor-metal with symmetric and asymmetric double Schottky barriers.
    Zhu L; Liu K; Hu T; Dong W; Chen Z; Wang Z
    Nanoscale; 2018 Jul; 10(26):12848-12854. PubMed ID: 29947633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers.
    Lee YK; Lee H; Park JY
    Sci Rep; 2014 Apr; 4():4580. PubMed ID: 24694838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical tuning effect for Schottky barrier and hot-electron harvest in a plasmonic Au/TiO
    Sun Z; Fang Y
    Sci Rep; 2021 Jan; 11(1):338. PubMed ID: 33432085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot electron-driven photocatalytic water splitting.
    Hou B; Shen L; Shi H; Kapadia R; Cronin SB
    Phys Chem Chem Phys; 2017 Jan; 19(4):2877-2881. PubMed ID: 28074948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schottky barrier characteristics and internal gain mechanism of TiO2 UV detectors.
    Zhang H; Zhang M; Feng C; Chen W; Liu C; Zhou J; Ruan S
    Appl Opt; 2012 Mar; 51(7):894-7. PubMed ID: 22410892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO
    Ouyang W; Teng F; Jiang M; Fang X
    Small; 2017 Oct; 13(39):. PubMed ID: 28834210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmons Enhancing Sub-Bandgap Photoconductivity in TiO
    Ibrahem MA; Verrelli E; Adawi AM; Bouillard JG; O'Neill M
    ACS Omega; 2024 Mar; 9(9):10169-10176. PubMed ID: 38463264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically powered ZnO nanowires with symmetric and asymmetric contacts.
    Zhang L; Zhang X; Lai J; Liu Z; Hou S; Xie S; Gao M
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1203-7. PubMed ID: 23646603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect.
    Kim J; Yun JH; Kim CH; Park YC; Woo JY; Park J; Lee JH; Yi J; Han CS
    Nanotechnology; 2010 Mar; 21(11):115205. PubMed ID: 20173241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoarchitectonics of a Au nanoprism array on WO
    Chen X; Li P; Tong H; Kako T; Ye J
    Sci Technol Adv Mater; 2011 Aug; 12(4):044604. PubMed ID: 27877412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires.
    Chakraborty R; Greullet F; George C; Baranov D; Di Fabrizio E; Krahne R
    Nanoscale; 2013 Jun; 5(12):5334-40. PubMed ID: 23575728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots.
    Lee C; Choi H; Nedrygailov II; Lee YK; Jeong S; Park JY
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5081-5089. PubMed ID: 29308649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Plasmonic Effects and Schottky Junctions into Metal-Organic Framework Composites: Steering Charge Flow for Enhanced Visible-Light Photocatalysis.
    Xiao JD; Han L; Luo J; Yu SH; Jiang HL
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1103-1107. PubMed ID: 29215207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric Light Excitation for Photodetectors Based on Nanoscale Semiconductors.
    Liang S; Wang F; Ma Z; Wei N; Wu G; Li G; Liu H; Hu X; Wang S; Peng LM
    ACS Nano; 2017 Jan; 11(1):549-557. PubMed ID: 27960052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared detection based on the excitation of hot electrons in Au/Si microcone array.
    Zhang Z; Yan J; You J; Zhu Y; Wang L; Zhong Z; Jiang Z
    Nanotechnology; 2024 Jul; 35(40):. PubMed ID: 38991504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedding plasmonic nanostructure diodes enhances hot electron emission.
    Knight MW; Wang Y; Urban AS; Sobhani A; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2013 Apr; 13(4):1687-92. PubMed ID: 23452192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.