These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29947792)

  • 1. Mechanisms Underlying Exacerbation of Osmotic Nephrosis Caused by Pre-existing Kidney Injury.
    Matsushita K; Takasu S; Kuroda K; Ishii Y; Kijima A; Ogawa K; Umemura T
    Toxicol Sci; 2018 Oct; 165(2):420-430. PubMed ID: 29947792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes.
    Dickenmann M; Oettl T; Mihatsch MJ
    Am J Kidney Dis; 2008 Mar; 51(3):491-503. PubMed ID: 18295066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravenous immunoglobulin-induced osmotic nephrosis.
    Ahsan N; Palmer BF; Wheeler D; Greenlee RG; Toto RD
    Arch Intern Med; 1994 Sep; 154(17):1985-7. PubMed ID: 8074604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of cysteine-rich protein 61 attenuates renal inflammation and fibrosis after ischemic kidney injury.
    Lai CF; Lin SL; Chiang WC; Chen YM; Wu VC; Young GH; Ko WJ; Kuo ML; Tsai TJ; Wu KD
    Am J Physiol Renal Physiol; 2014 Sep; 307(5):F581-92. PubMed ID: 24920753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP induces PAD4 in renal proximal tubule cells via P2X7 receptor activation to exacerbate ischemic AKI.
    Rabadi M; Kim M; Li H; Han SJ; Choi Y; D'Agati V; Lee HT
    Am J Physiol Renal Physiol; 2018 Feb; 314(2):F293-F305. PubMed ID: 29021225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pinocytosis as the cause of sucrose nephrosis.
    Schwartz SL; Johnson CB
    Nephron; 1971; 8(3):246-54. PubMed ID: 4344404
    [No Abstract]   [Full Text] [Related]  

  • 7. miR-182 enhances acute kidney injury by promoting apoptosis involving the targeting and regulation of TCF7L2/Wnt/β-catenins pathway.
    Li H; Ma Y; Chen B; Shi J
    Eur J Pharmacol; 2018 Jul; 831():20-27. PubMed ID: 29733821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [So-called osmotic nephrosis or hydropic vacuolization in the proximal tubules].
    Fournier A; Watchi JM; Reveillaud RJ
    Presse Med (1893); 1969 Dec; 77(53):1987-90. PubMed ID: 5369435
    [No Abstract]   [Full Text] [Related]  

  • 9. MIF-2/D-DT enhances proximal tubular cell regeneration through SLPI- and ATF4-dependent mechanisms.
    Ochi A; Chen D; Schulte W; Leng L; Moeckel N; Piecychna M; Averdunk L; Stoppe C; Bucala R; Moeckel G
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F767-F780. PubMed ID: 28539339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion.
    Persy VP; Verstrepen WA; Ysebaert DK; De Greef KE; De Broe ME
    Kidney Int; 1999 Aug; 56(2):601-11. PubMed ID: 10432399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic nephrosis in a renal transplant recipient.
    Ebcioglu Z; Cohen DJ; Crew RJ; Hardy MA; Ratner LE; D'Agati VD; Markowitz GS
    Kidney Int; 2006 Nov; 70(10):1873-6. PubMed ID: 16883320
    [No Abstract]   [Full Text] [Related]  

  • 12. Osmotic nephrosis and contrast media.
    Heinrich MC
    Am J Kidney Dis; 2008 Sep; 52(3):629; author reply 629-30. PubMed ID: 18725024
    [No Abstract]   [Full Text] [Related]  

  • 13. Cytoprotective effect of vitamin C against gentamicin-induced acute kidney injury in rats.
    Stojiljkovic N; Stoiljkovic M; Randjelovic P; Veljkovic S; Mihailovic D
    Exp Toxicol Pathol; 2012 Jan; 64(1-2):69-74. PubMed ID: 20619622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic nephrosis due to high-dose immunoglobulin therapy containing sucrose (but not with glycine) in a patient with immunoglobulin A nephritis.
    Hansen-Schmidt S; Silomon J; Keller F
    Am J Kidney Dis; 1996 Sep; 28(3):451-3. PubMed ID: 8804246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.
    Le Clef N; Verhulst A; D'Haese PC; Vervaet BA
    PLoS One; 2016; 11(3):e0152153. PubMed ID: 27007127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury.
    Hall AM; Rhodes GJ; Sandoval RM; Corridon PR; Molitoris BA
    Kidney Int; 2013 Jan; 83(1):72-83. PubMed ID: 22992467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravenous dextran 70 infusion has protective effects on ischemia reperfusion injury of kidney: an experimental study.
    Semercioz A; Temiz MZ; Erbarut I; Izol U; Aykan S; Tuken M; Kandirali E
    Minerva Urol Nefrol; 2018 Apr; 70(2):202-210. PubMed ID: 29161807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR spectroscopy and electron microscopy identification of metabolic and ultrastructural changes to the kidney following ischemia-reperfusion injury.
    Chihanga T; Ma Q; Nicholson JD; Ruby HN; Edelmann RE; Devarajan P; Kennedy MA
    Am J Physiol Renal Physiol; 2018 Feb; 314(2):F154-F166. PubMed ID: 28978534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic nephrosis. A clinical and experimental investigation.
    Janssen CW
    Acta Chir Scand; 1968; 134(6):481-7. PubMed ID: 5731288
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of long non-coding RNA growth arrest-specific 5 on apoptosis in renal ischaemia/reperfusion injury.
    Geng X; Xu X; Fang Y; Zhao S; Hu J; Xu J; Jia P; Ding X; Teng J
    Nephrology (Carlton); 2019 Apr; 24(4):405-413. PubMed ID: 30129267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.