BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29947836)

  • 21. High-efficiency biosynthesis of hypocrellin A in Shiraia sp. using gamma-ray mutagenesis.
    Liu XY; Shen XY; Fan L; Gao J; Hou CL
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4875-83. PubMed ID: 26767989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of microbial elicitor on production of hypocrellin by Shiraia bambusicola.
    Du W; Liang Z; Zou X; Han Y; Liang J; Yu J; Chen W; Wang Y; Sun C
    Folia Microbiol (Praha); 2013 Jul; 58(4):283-9. PubMed ID: 23229285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1.
    Ma YJ; Zheng LP; Wang JW
    Microb Cell Fact; 2019 Jul; 18(1):121. PubMed ID: 31277643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced production of hypocrellin A by ultrasound stimulation in submerged cultures of Shiraia bambusicola.
    Sun CX; Ma YJ; Wang JW
    Ultrason Sonochem; 2017 Sep; 38():214-224. PubMed ID: 28633821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an HPLC method to analyze and prepare elsinochrome C and hypocrellin A in the submerged fermentation broth of Shiria sp. SUPER-H168.
    Hu M; Cai Y; Liao X; Hao Z; Liu J
    Biomed Chromatogr; 2012 Jun; 26(6):737-42. PubMed ID: 22002198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide.
    Zhao N; Yu Y; Yue Y; Dou M; Guo B; Yan S; Chen S
    Sci Rep; 2021 Jan; 11(1):2365. PubMed ID: 33504905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201.
    Li D; Zhao N; Guo BJ; Lin X; Chen SL; Yan SZ
    J Microbiol; 2019 Feb; 57(2):154-162. PubMed ID: 30706344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Studies on liquid fermentation of anamorph of Shiraia bambusicola].
    Chen J; Li Z; Jiao Q
    Zhong Yao Cai; 2005 Dec; 28(12):1049-51. PubMed ID: 16568656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contrasting regulation of live Bacillus cereus No.1 and its volatiles on Shiraia perylenequinone production.
    Xu R; Li XP; Zhang X; Shen WH; Min CY; Wang JW
    Microb Cell Fact; 2022 Aug; 21(1):172. PubMed ID: 35999640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola.
    Deng H; Gao R; Liao X; Cai Y
    Res Microbiol; 2017 Sep; 168(7):664-672. PubMed ID: 28549739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced hypocrellin production via coexpression of alpha-amylase and hemoglobin genes in Shiraia bambusicola.
    Gao R; Deng H; Guan Z; Liao X; Cai Y
    AMB Express; 2018 May; 8(1):71. PubMed ID: 29721676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modular engineering of Shiraia bambusicola for hypocrellin production through an efficient CRISPR system.
    Deng H; Liang W; Fan TP; Zheng X; Cai Y
    Int J Biol Macromol; 2020 Dec; 165(Pt A):796-803. PubMed ID: 33010268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric Oxide and Hydrogen Peroxide Signaling in Extractive
    Li XP; Wang Y; Ma YJ; Wang JW; Zheng LP
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019072
    [No Abstract]   [Full Text] [Related]  

  • 34. Purification of hypocrellins from Shiraia bambusicola by coordinated high-speed countercurrent chromatography using cupric chloride as a complexing agent.
    Dong H; Yao X; Guo L; Yu S; Duan W; Liu W; Wang X
    J Sep Sci; 2021 Apr; 44(7):1383-1390. PubMed ID: 33471412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat stress-induced NO enhanced perylenequinone biosynthesis of Shiraia sp. via calcium signaling pathway.
    Bao Z; Chen Y; Zhang Z; Yang H; Yan R; Zhu D
    Appl Microbiol Biotechnol; 2024 May; 108(1):317. PubMed ID: 38700737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure characterization of an exopolysaccharide from a Shiraia-associated bacterium and its strong eliciting activity on the fungal hypocrellin production.
    Zhou LL; Shen WH; Ma YJ; Li XP; Wu JY; Wang JW
    Int J Biol Macromol; 2023 Jan; 226():423-433. PubMed ID: 36473526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola.
    Fang LZ; Qing C; Shao HJ; Yang YD; Dong ZJ; Wang F; Zhao W; Yang WQ; Liu JK
    J Antibiot (Tokyo); 2006 Jun; 59(6):351-4. PubMed ID: 16915819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-responsive regulation of the fermentation of hypocrellin A by Shiraia bambusicola (GDMCC 60438).
    Wen Y; Liao B; Yan X; Wu Z; Tian X
    Microb Cell Fact; 2022 Jul; 21(1):135. PubMed ID: 35787717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycoconjugated hypocrellin: synthesis of [(beta-D-glucosyl)ethylthiyl]hypocrellins and photosensitized generation of singlet oxygen.
    He YY; An JY; Jiang LJ
    Biochim Biophys Acta; 1999 Oct; 1472(1-2):232-9. PubMed ID: 10572945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of branched-chain amino acids on Shiraia perylenequinone production in mycelium cultures.
    Shen WH; Cong RP; Li XP; Huang QY; Zheng LP; Wang JW
    Microb Cell Fact; 2023 Mar; 22(1):57. PubMed ID: 36964527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.