These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29947952)

  • 1. TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation.
    Liu Z; Wang X; Chen X; Shi G; Bai Q; Xiao K
    Plant Cell Rep; 2018 Sep; 37(9):1293-1309. PubMed ID: 29947952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat miRNA TaemiR408 Acts as an Essential Mediator in Plant Tolerance to Pi Deprivation and Salt Stress via Modulating Stress-Associated Physiological Processes.
    Bai Q; Wang X; Chen X; Shi G; Liu Z; Guo C; Xiao K
    Front Plant Sci; 2018; 9():499. PubMed ID: 29720988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TaZAT8, a C2H2-ZFP type transcription factor gene in wheat, plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition, ROS homeostasis and root system establishment.
    Ding W; Wang Y; Fang W; Gao S; Li X; Xiao K
    Physiol Plant; 2016 Nov; 158(3):297-311. PubMed ID: 27194419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization on TaMPK14, an MAPK family gene of wheat, in modulating N-starvation response through regulating N uptake and ROS homeostasis.
    Shi M; Wang Z; Ma Z; Song W; Lu W; Xiao K
    Plant Cell Rep; 2020 Oct; 39(10):1285-1299. PubMed ID: 32648010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.
    Yang T; Hao L; Yao S; Zhao Y; Lu W; Xiao K
    Plant Physiol Biochem; 2016 Jul; 104():99-113. PubMed ID: 27107183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat.
    Oono Y; Kobayashi F; Kawahara Y; Yazawa T; Handa H; Itoh T; Matsumoto T
    BMC Genomics; 2013 Feb; 14():77. PubMed ID: 23379779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TaMPK2B, a member of the MAPK family in T. aestivum, enhances plant low-Pi stress tolerance through modulating physiological processes associated with phosphorus starvation defensiveness.
    Bai J; Xie Y; Shi M; Yao S; Lu W; Xiao K
    Plant Sci; 2022 Oct; 323():111375. PubMed ID: 35820548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TaNBP1, a guanine nucleotide-binding subunit gene of wheat, is essential in the regulation of N starvation adaptation via modulating N acquisition and ROS homeostasis.
    Liu Z; Zhao Y; Wang X; Yang M; Guo C; Xiao K
    BMC Plant Biol; 2018 Aug; 18(1):167. PubMed ID: 30103700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway.
    Yang T; Yao S; Hao L; Zhao Y; Lu W; Xiao K
    Plant Cell Rep; 2016 Nov; 35(11):2309-2323. PubMed ID: 27541276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global identification and characterization of miRNA family members responsive to potassium deprivation in wheat (Triticum aestivum L.).
    Zhao Y; Xu K; Liu G; Li S; Zhao S; Liu X; Yang X; Xiao K
    Sci Rep; 2020 Sep; 10(1):15812. PubMed ID: 32978439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes.
    Sun B; Zhao Y; Shi S; Yang M; Xiao K
    Plant Physiol Biochem; 2019 Mar; 136():127-142. PubMed ID: 30665058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheat mitogen-activated protein kinase gene TaMPK4 improves plant tolerance to multiple stresses through modifying root growth, ROS metabolism, and nutrient acquisitions.
    Hao L; Wen Y; Zhao Y; Lu W; Xiao K
    Plant Cell Rep; 2015 Dec; 34(12):2081-97. PubMed ID: 26275989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The miR166d/
    Lei X; Chen M; Xu K; Sun R; Zhao S; Wu N; Zhang S; Yang X; Xiao K; Zhao Y
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions.
    Guo C; Zhao X; Liu X; Zhang L; Gu J; Li X; Lu W; Xiao K
    Planta; 2013 Apr; 237(4):1163-78. PubMed ID: 23314830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).
    Kumar RR; Pathak H; Sharma SK; Kala YK; Nirjal MK; Singh GP; Goswami S; Rai RD
    Funct Integr Genomics; 2015 May; 15(3):323-48. PubMed ID: 25480755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery.
    Secco D; Jabnoune M; Walker H; Shou H; Wu P; Poirier Y; Whelan J
    Plant Cell; 2013 Nov; 25(11):4285-304. PubMed ID: 24249833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR164-targeted TaPSK5 encodes a phytosulfokine precursor that regulates root growth and yield traits in common wheat (Triticum aestivum L.).
    Geng Y; Jian C; Xu W; Liu H; Hao C; Hou J; Liu H; Zhang X; Li T
    Plant Mol Biol; 2020 Dec; 104(6):615-628. PubMed ID: 32968950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).
    Li Z; Xu H; Li Y; Wan X; Ma Z; Cao J; Li Z; He F; Wang Y; Wan L; Tong Z; Li X
    Plant Mol Biol; 2018 Mar; 96(4-5):473-492. PubMed ID: 29532290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.
    Kumar D; Dutta S; Singh D; Prabhu KV; Kumar M; Mukhopadhyay K
    Planta; 2017 Jan; 245(1):161-182. PubMed ID: 27699487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling.
    Li P; Ma X; Wang J; Yao L; Li B; Meng Y; Si E; Yang K; Shang X; Zhang X; Wang H
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.