These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29947952)

  • 21. TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D contribute to phosphate uptake and plant growth in bread wheat.
    Wang P; Li G; Li G; Yuan S; Wang C; Xie Y; Guo T; Kang G; Wang D
    New Phytol; 2021 Sep; 231(5):1968-1983. PubMed ID: 34096624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.).
    Hu H; He J; Zhao J; Ou X; Li H; Ru Z
    Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miRNA-based drought regulation in wheat.
    Akdogan G; Tufekci ED; Uranbey S; Unver T
    Funct Integr Genomics; 2016 May; 16(3):221-33. PubMed ID: 26141043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.).
    Han R; Jian C; Lv J; Yan Y; Chi Q; Li Z; Wang Q; Zhang J; Liu X; Zhao H
    BMC Genomics; 2014 Apr; 15():289. PubMed ID: 24734873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development-associated microRNAs in grains of wheat (Triticum aestivum L.).
    Meng F; Liu H; Wang K; Liu L; Wang S; Zhao Y; Yin J; Li Y
    BMC Plant Biol; 2013 Sep; 13():140. PubMed ID: 24060047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice.
    Wang Z; Hu H; Huang H; Duan K; Wu Z; Wu P
    J Integr Plant Biol; 2009 Jul; 51(7):663-74. PubMed ID: 19566645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.).
    Xin M; Wang Y; Yao Y; Xie C; Peng H; Ni Z; Sun Q
    BMC Plant Biol; 2010 Jun; 10():123. PubMed ID: 20573268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. miR444a has multiple functions in the rice nitrate-signaling pathway.
    Yan Y; Wang H; Hamera S; Chen X; Fang R
    Plant J; 2014 Apr; 78(1):44-55. PubMed ID: 24460537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and expression profiling of Pht1 phosphate transporters in wheat in controlled environments and in the field.
    Grün A; Buchner P; Broadley MR; Hawkesford MJ
    Plant Biol (Stuttg); 2018 Mar; 20(2):374-389. PubMed ID: 29148171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation.
    de Souza Campos PM; Cornejo P; Rial C; Borie F; Varela RM; Seguel A; López-Ráez JA
    J Exp Bot; 2019 Oct; 70(20):5631-5642. PubMed ID: 31359044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici.
    Feng H; Wang T; Feng C; Zhang Q; Zhang X; Huang L; Wang X; Kang Z
    Physiol Plant; 2016 May; 157(1):95-107. PubMed ID: 26563616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and expression patterns of key C
    Bachir DG; Saeed I; Song Q; Linn TZ; Chen L; Hu YG
    J Plant Physiol; 2017 Jun; 213():87-97. PubMed ID: 28340469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum.
    Pandey R; Joshi G; Bhardwaj AR; Agarwal M; Katiyar-Agarwal S
    PLoS One; 2014; 9(4):e95800. PubMed ID: 24759739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis.
    Huen A; Bally J; Smith P
    BMC Genomics; 2018 Dec; 19(1):940. PubMed ID: 30558535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.).
    Han Y; Luan F; Zhu H; Shao Y; Chen A; Lu C; Luo Y; Zhu B
    Sci China C Life Sci; 2009 Nov; 52(11):1091-100. PubMed ID: 19937208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-omics reveals the key and specific miRNA-mRNA modules underlying salt tolerance in wild emmer wheat (Triticum dicoccoides L.).
    Yang G; Pan W; Cao R; Guo Q; Cheng Y; Zhao Q; Cui L; Nie X
    BMC Genomics; 2022 Oct; 23(1):724. PubMed ID: 36284277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress.
    Qiu Z; He Y; Zhang Y; Guo J; Wang L
    Ecotoxicol Environ Saf; 2018 Nov; 164():611-617. PubMed ID: 30153643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative profiling of roots small RNA expression and corresponding gene ontology and pathway analyses for low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress.
    Zhou M; Zheng S; Li Y; Liu R; Zhang L; Wu Y
    Funct Integr Genomics; 2020 Mar; 20(2):177-190. PubMed ID: 31435847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of Arabidopsis
    Pigolev AV; Miroshnichenko DN; Pushin AS; Terentyev VV; Boutanayev AM; Dolgov SV; Savchenko TV
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa.
    Bao H; Chen H; Chen M; Xu H; Huo X; Xu Q; Wang Y
    Funct Integr Genomics; 2019 Nov; 19(6):953-972. PubMed ID: 31177404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.