These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1079 related articles for article (PubMed ID: 29947968)

  • 21. Importance of disturbance history on net primary productivity in the world's most productive forests and implications for the global carbon cycle.
    Volkova L; Roxburgh SH; Weston CJ; Benyon RG; Sullivan AL; Polglase PJ
    Glob Chang Biol; 2018 Sep; 24(9):4293-4303. PubMed ID: 29758588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional estimation of current and future forest biomass.
    Mickler RA; Earnhardt TS; Moore JA
    Environ Pollut; 2002; 116 Suppl 1():S7-16. PubMed ID: 11833920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The propagule doesn't fall far from the tree, especially after short-interval, high-severity fire.
    Gill NS; Hoecker TJ; Turner MG
    Ecology; 2021 Jan; 102(1):e03194. PubMed ID: 32910502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone.
    Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG
    Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.
    Kauffman JB; Hughes RF; Heider C
    Ecol Appl; 2009 Jul; 19(5):1211-22. PubMed ID: 19688928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire.
    Rammer W; Braziunas KH; Hansen WD; Ratajczak Z; Westerling AL; Turner MG; Seidl R
    Glob Chang Biol; 2021 Sep; 27(18):4339-4351. PubMed ID: 34213047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconciling salvage logging of boreal forests with a tural-disturbance management model.
    Schmiegelow FK; Stepnisky DP; Stambaugh CA; Koivula M
    Conserv Biol; 2006 Aug; 20(4):971-83. PubMed ID: 16922214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-biomass forests of the Pacific Northwest: who manages them and how much is protected?
    Krankina ON; DellaSala DA; Leonard J; Yatskov M
    Environ Manage; 2014 Jul; 54(1):112-21. PubMed ID: 24894007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing modern and presettlement forest dynamics of a subboreal wilderness: does spruce budworm enhance fire risk?
    Sturtevant BR; Miranda BR; Shinneman DJ; Gustafson EJ; Wolter PT
    Ecol Appl; 2012 Jun; 22(4):1278-96. PubMed ID: 22827135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Historical harvests reduce neighboring old-growth basal area across a forest landscape.
    Bell DM; Spies TA; Pabst R
    Ecol Appl; 2017 Jul; 27(5):1666-1676. PubMed ID: 28421698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-season climate synchronized forest fires throughout the 20th century, northern Rockies, U.S.A.
    Morgan P; Heyerdahl EK; Gibson CE
    Ecology; 2008 Mar; 89(3):717-28. PubMed ID: 18459335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of climate change, fire and silvicultural management on ecological resilience of typical cold-temperate forests in China.].
    Luo X; Liang Y; He HS; Huang C; Zhang QL
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1699-1712. PubMed ID: 31107027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers.
    Hansen WD; Braziunas KH; Rammer W; Seidl R; Turner MG
    Ecology; 2018 Apr; 99(4):966-977. PubMed ID: 29464688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-season climate synchronized historical fires in dry forests (1650-1900), northern Rockies, U.S.A.
    Heyerdahl EK; Morgan P; Riser JP
    Ecology; 2008 Mar; 89(3):705-16. PubMed ID: 18459334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems.
    Rodríguez A; Kouki J
    Ecol Appl; 2017 Mar; 27(2):589-602. PubMed ID: 27862547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fire effects on temperate forest soil C and N storage.
    Nave LE; Vance ED; Swanston CW; Curtis PS
    Ecol Appl; 2011 Jun; 21(4):1189-201. PubMed ID: 21774423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.
    Scholl AE; Taylor AH
    Ecol Appl; 2010 Mar; 20(2):362-80. PubMed ID: 20405793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pollen, wind and fire: how to investigate genetic effects of disturbance-induced change in forest trees.
    Bacles CF
    Mol Ecol; 2014 Jan; 23(1):20-2. PubMed ID: 24372751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.
    Modugno S; Balzter H; Cole B; Borrelli P
    J Environ Manage; 2016 May; 172():112-26. PubMed ID: 26922502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century.
    Westerling AL; Turner MG; Smithwick EA; Romme WH; Ryan MG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13165-70. PubMed ID: 21788495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.