These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 29948111)
1. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Rai M; Ingle AP; Paralikar P; Anasane N; Gade R; Ingle P Appl Microbiol Biotechnol; 2018 Aug; 102(16):6827-6839. PubMed ID: 29948111 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive review on soft rot disease management in ginger ( Yadav D; Gaurav H; Yadav R; Waris R; Afzal K; Chandra Shukla A Heliyon; 2023 Jul; 9(7):e18337. PubMed ID: 37539157 [No Abstract] [Full Text] [Related]
3. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Dinesh R; Anandaraj M; Kumar A; Bini YK; Subila KP; Aravind R Microbiol Res; 2015 Apr; 173():34-43. PubMed ID: 25801969 [TBL] [Abstract][Full Text] [Related]
4. Volatile Organic Compounds Emitted by the Biocontrol Agent Pythium oligandrum Contribute to Ginger Plant Growth and Disease Resistance. Sheikh TMM; Zhou D; Ali H; Hussain S; Wang N; Chen S; Zhao Y; Wen X; Wang X; Zhang J; Wang L; Deng S; Feng H; Raza W; Fu P; Peng H; Wei L; Daly P Microbiol Spectr; 2023 Aug; 11(4):e0151023. PubMed ID: 37534988 [TBL] [Abstract][Full Text] [Related]
5. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Liu Y; Wisniewski M; Kennedy JF; Jiang Y; Tang J; Liu J Carbohydr Polym; 2016 Oct; 151():474-479. PubMed ID: 27474591 [TBL] [Abstract][Full Text] [Related]
6. Biogenically engineered nanoparticles inhibit Athawale V; Paralikar P; Ingle AP; Rai M IET Nanobiotechnol; 2018 Dec; 12(8):1084-1089. PubMed ID: 30964018 [TBL] [Abstract][Full Text] [Related]
7. Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum, in infected ginger rhizomes. Wang PH; Chung CY; Lin YS; Yeh Y Lett Appl Microbiol; 2003; 36(2):116-20. PubMed ID: 12535133 [TBL] [Abstract][Full Text] [Related]
8. Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. Jasim B; Anisha C; Rohini S; Kurian JM; Jyothis M; Radhakrishnan EK World J Microbiol Biotechnol; 2014 May; 30(5):1649-54. PubMed ID: 24353040 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger. Nair RA; Thomas G Gene; 2013 Mar; 516(1):58-65. PubMed ID: 23262347 [TBL] [Abstract][Full Text] [Related]
10. Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum. Anisha C; Radhakrishnan EK Appl Biochem Biotechnol; 2015 Apr; 175(7):3458-67. PubMed ID: 25820297 [TBL] [Abstract][Full Text] [Related]
11. Plant growth-promoting and biocontrol traits of endophytic Bacillus licheniformis against soft rot causing Pythium myriotylum in ginger plant. Alarjani KM; Elshikh MS J Basic Microbiol; 2024 Jul; 64(7):e2300643. PubMed ID: 38578065 [TBL] [Abstract][Full Text] [Related]
12. Soil Bacterial Community May Offer Solutions for Ginger Cultivation. Wang CW; Michelle Wong JW; Yeh SS; Eric Hsieh Y; Tseng CH; Yang SH; Tang SL Microbiol Spectr; 2022 Oct; 10(5):e0180322. PubMed ID: 36098526 [TBL] [Abstract][Full Text] [Related]
13. Daly P; Chen Y; Zhang Q; Zhu H; Li J; Zhang J; Deng S; Wang L; Zhou D; Tang Z; Wei L Plant Dis; 2022 Feb; 106(2):510-517. PubMed ID: 34340560 [TBL] [Abstract][Full Text] [Related]
14. First Report in China of Soft Rot of Ginger Caused by Pythium aphanidermatum. Li Y; Mao LG; Yan DD; Liu XM; Ma TT; Shen J; Liu PF; Li Z; Wang QX; Ouyang CB; Guo MX; Cao AC Plant Dis; 2014 Jul; 98(7):1011. PubMed ID: 30708878 [TBL] [Abstract][Full Text] [Related]
15. Differential Modulation of Endophytic Microbiome of Ginger in the Presence of Beneficial Organisms, Pathogens and Both as Identified by DGGE Analysis. Sabu R; Aswani R; Prabhakaran P; Krishnakumar B; Radhakrishnan EK Curr Microbiol; 2018 Aug; 75(8):1033-1037. PubMed ID: 29600411 [TBL] [Abstract][Full Text] [Related]
16. Intraspecific strains of Pythium aphanidermatum induced disease resistance in ginger and response of host proteins. Ghosh R; Datta M; Purkayastha RP Indian J Exp Biol; 2006 Jan; 44(1):68-72. PubMed ID: 16430094 [TBL] [Abstract][Full Text] [Related]
17. Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot. Wang W; Portal-Gonzalez N; Wang X; Li J; Li H; Portieles R; Borras-Hidalgo O; He W; Santos-Bermudez R Microbiome; 2024 Sep; 12(1):167. PubMed ID: 39244625 [TBL] [Abstract][Full Text] [Related]
18. Dual-Transcriptomic, Microscopic, and Biocontrol Analyses of the Interaction Between the Bioeffector Daly P; Chen S; Xue T; Li J; Sheikh TMM; Zhang Q; Wang X; Zhang J; Fitzpatrick DA; McGowan J; Shi X; Deng S; Jiu M; Zhou D; Druzhinina IS; Wei L Front Microbiol; 2021; 12():765872. PubMed ID: 34867897 [TBL] [Abstract][Full Text] [Related]
19. Benzalkonium Chloride and Benzethonium Chloride Effectively Reduce Spore Germination of Ginger Soft Rot Pathogens: Zhao D; Zhang Y; Jin Z; Bai R; Wang J; Wu L; He Y J Fungi (Basel); 2023 Dec; 10(1):. PubMed ID: 38248918 [TBL] [Abstract][Full Text] [Related]
20. Genetic variation in Pythium myriotylum based on SNP typing and development of a PCR-RFLP detection of isolates recovered from Pythium soft rot ginger. Le DP; Smith MK; Aitken EAB Lett Appl Microbiol; 2017 Oct; 65(4):319-326. PubMed ID: 28736938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]