BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 29948122)

  • 1. Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes.
    Bröker JN; Müller B; van Deenen N; Prüfer D; Schulze Gronover C
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6923-6934. PubMed ID: 29948122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway.
    Pütter KM; van Deenen N; Unland K; Prüfer D; Schulze Gronover C
    BMC Plant Biol; 2017 May; 17(1):88. PubMed ID: 28532507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and Characterization of Oxidosqualene Cyclases Involved in Taraxasterol, Taraxerol and Bauerenol Triterpene Biosynthesis in Taraxacum coreanum.
    Han JY; Jo HJ; Kwon EK; Choi YE
    Plant Cell Physiol; 2019 Jul; 60(7):1595-1603. PubMed ID: 31020326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana).
    Lee AR; Kwon M; Kang MK; Kim J; Kim SU; Ro DK
    Metab Eng; 2019 Mar; 52():20-28. PubMed ID: 30389612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical phenotypes of the hmg1 and hmg2 mutants of Arabidopsis demonstrate the in-planta role of HMG-CoA reductase in triterpene biosynthesis.
    Ohyama K; Suzuki M; Masuda K; Yoshida S; Muranaka T
    Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1518-21. PubMed ID: 17917299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua.
    Kirby J; Romanini DW; Paradise EM; Keasling JD
    FEBS J; 2008 Apr; 275(8):1852-9. PubMed ID: 18336574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 8. Production of the bioactive plant-derived triterpenoid morolic acid in engineered Saccharomyces cerevisiae.
    Srisawat P; Yasumoto S; Fukushima EO; Robertlee J; Seki H; Muranaka T
    Biotechnol Bioeng; 2020 Jul; 117(7):2198-2208. PubMed ID: 32311084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.
    Lv X; Xie W; Lu W; Guo F; Gu J; Yu H; Ye L
    J Biotechnol; 2014 Sep; 186():128-36. PubMed ID: 25016205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism.
    Lu S; Zhou C; Guo X; Du Z; Cheng Y; Wang Z; He X
    Microb Biotechnol; 2022 Aug; 15(8):2292-2306. PubMed ID: 35531990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Construction of cell factories for production of lupeol in Saccharomyces cerevisiae].
    Lin TT; Wang D; Dai ZB; Zhang XL; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(6):1008-1015. PubMed ID: 28875662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana.
    Husselstein-Muller T; Schaller H; Benveniste P
    Plant Mol Biol; 2001 Jan; 45(1):75-92. PubMed ID: 11247608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes.
    Yamamoto K; Hara KY; Morita T; Nishimura A; Sasaki D; Ishii J; Ogino C; Kizaki N; Kondo A
    Microb Cell Fact; 2016 Sep; 15(1):155. PubMed ID: 27624332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae.
    Casey WM; Keesler GA; Parks LW
    J Bacteriol; 1992 Nov; 174(22):7283-8. PubMed ID: 1429452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway.
    Liu H; Fan J; Wang C; Li C; Zhou X
    J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein.
    Moser S; Leitner E; Plocek TJ; Vanhessche K; Pichler H
    Yeast; 2020 Jan; 37(1):163-172. PubMed ID: 31606910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of Soyasapogenol B by Engineered Saccharomyces cerevisiae.
    Li M; Zhao M; Wei P; Zhang C; Lu W
    Appl Biochem Biotechnol; 2021 Oct; 193(10):3202-3213. PubMed ID: 34097255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Bard M; Downing JF
    J Gen Microbiol; 1981 Aug; 125(2):415-20. PubMed ID: 7033470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae.
    Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD
    Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.