These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 29948143)
21. Maneuvers during legged locomotion. Jindrich DL; Qiao M Chaos; 2009 Jun; 19(2):026105. PubMed ID: 19566265 [TBL] [Abstract][Full Text] [Related]
22. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry. Spardy LE; Markin SN; Shevtsova NA; Prilutsky BI; Rybak IA; Rubin JE J Neural Eng; 2011 Dec; 8(6):065004. PubMed ID: 22058275 [TBL] [Abstract][Full Text] [Related]
23. The role of curvature feedback in the energetics and dynamics of lamprey swimming: A closed-loop model. Hamlet CL; Hoffman KA; Tytell ED; Fauci LJ PLoS Comput Biol; 2018 Aug; 14(8):e1006324. PubMed ID: 30118476 [TBL] [Abstract][Full Text] [Related]
24. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. Sponberg S; Full RJ J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999 [TBL] [Abstract][Full Text] [Related]
25. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach. Ridgel AL; Ritzmann RE; Schaefer PL J Exp Biol; 2003 Dec; 206(Pt 24):4453-65. PubMed ID: 14610030 [TBL] [Abstract][Full Text] [Related]
26. A neuromechanical model exploring the role of the common inhibitor motor neuron in insect locomotion. Naris M; Szczecinski NS; Quinn RD Biol Cybern; 2020 Feb; 114(1):23-41. PubMed ID: 31788747 [TBL] [Abstract][Full Text] [Related]
27. Leg design in hexapedal runners. Full RJ; Blickhan R; Ting LH J Exp Biol; 1991 Jul; 158():369-90. PubMed ID: 1919412 [TBL] [Abstract][Full Text] [Related]
28. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane-II. Application. Schmitt J; Holmes P Biol Cybern; 2000 Dec; 83(6):517-27. PubMed ID: 11130584 [TBL] [Abstract][Full Text] [Related]
29. Chapter 10--a hierarchical perspective on rhythm generation for locomotor control. Yakovenko S Prog Brain Res; 2011; 188():151-66. PubMed ID: 21333808 [TBL] [Abstract][Full Text] [Related]
30. Signatures of proprioceptive control in Denham JE; Ranner T; Cohen N Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201846 [TBL] [Abstract][Full Text] [Related]
32. Central-complex control of movement in the freely walking cockroach. Martin JP; Guo P; Mu L; Harley CM; Ritzmann RE Curr Biol; 2015 Nov; 25(21):2795-2803. PubMed ID: 26592340 [TBL] [Abstract][Full Text] [Related]
33. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory. Schmitt J; Holmes P Biol Cybern; 2000 Dec; 83(6):501-15. PubMed ID: 11130583 [TBL] [Abstract][Full Text] [Related]
34. Closing the loop in legged neuromechanics: an open-source computer vision controlled treadmill. Spence AJ; Nicholson-Thomas G; Lampe R J Neurosci Methods; 2013 May; 215(2):164-9. PubMed ID: 23541994 [TBL] [Abstract][Full Text] [Related]
35. Task-level control of rapid wall following in the American cockroach. Cowan NJ; Lee J; Full RJ J Exp Biol; 2006 May; 209(Pt 9):1617-29. PubMed ID: 16621943 [TBL] [Abstract][Full Text] [Related]
36. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation. Spardy LE; Markin SN; Shevtsova NA; Prilutsky BI; Rybak IA; Rubin JE J Neural Eng; 2011 Dec; 8(6):065003. PubMed ID: 22058274 [TBL] [Abstract][Full Text] [Related]
37. Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects. Schmitt J; Garcia M; Razo RC; Holmes P; Full RJ Biol Cybern; 2002 May; 86(5):343-53. PubMed ID: 11984649 [TBL] [Abstract][Full Text] [Related]
38. Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis. Ritzmann RE; Ridgel AL; Pollack AJ J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):341-60. PubMed ID: 18180927 [TBL] [Abstract][Full Text] [Related]
40. Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback. Sponberg S; Libby T; Mullens CH; Full RJ Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1606-20. PubMed ID: 21502130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]