BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 29948204)

  • 1. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection.
    Yang J; Du F; Zhou X; Wang L; Li S; Fang R; Zhao J
    Parasitol Res; 2018 Aug; 117(8):2623-2633. PubMed ID: 29948204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation.
    Zhou CX; Zhu XQ; Elsheikha HM; He S; Li Q; Zhou DH; Suo X
    J Proteomics; 2016 Oct; 148():12-9. PubMed ID: 27422377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iTRAQ-based differential proteomic analysis in Mongolian gerbil brains chronically infected with Toxoplasma gondii.
    Lv L; Wang Y; Feng W; Hernandez JA; Huang W; Zheng Y; Zhou X; Lv S; Chen Y; Yuan ZG
    J Proteomics; 2017 May; 160():74-83. PubMed ID: 28323244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome analysis of normal and CD44-deleted mouse brain under chronic infection with Toxoplasma gondii.
    Li S; He B; Yang C; Yang J; Wang L; Duan X; Deng X; Zhao J; Fang R
    Acta Trop; 2020 Oct; 210():105589. PubMed ID: 32544399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for CD44 in the production of IFN-gamma and immunopathology during infection with Toxoplasma gondii.
    Blass SL; Puré E; Hunter CA
    J Immunol; 2001 May; 166(9):5726-32. PubMed ID: 11313415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice.
    Schlüter D; Deckert-Schlüter M; Lorenz E; Meyer T; Röllinghoff M; Bogdan C
    J Immunol; 1999 Mar; 162(6):3512-8. PubMed ID: 10092808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic Differences between Developmental Stages of
    Wang ZX; Zhou CX; Elsheikha HM; He S; Zhou DH; Zhu XQ
    Front Microbiol; 2017; 8():985. PubMed ID: 28626452
    [No Abstract]   [Full Text] [Related]  

  • 8. IL-10 is not required to prevent immune hyperactivity during memory responses to Toxoplasma gondii.
    Wille U; Nishi M; Lieberman L; Wilson EH; Roos DS; Hunter CA
    Parasite Immunol; 2004 May; 26(5):229-36. PubMed ID: 15491472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Peptidomics of Mouse Brain After Infection With Cyst-Forming
    Zhou CX; Gao M; Han B; Cong H; Zhu XQ; Zhou HY
    Front Immunol; 2021; 12():681242. PubMed ID: 34367142
    [No Abstract]   [Full Text] [Related]  

  • 10. Importance of IFN-gamma-mediated expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during chronic infection with Toxoplasma gondii.
    Wang X; Michie SA; Xu B; Suzuki Y
    J Interferon Cytokine Res; 2007 Apr; 27(4):329-38. PubMed ID: 17477820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the serum peptidome associated with Toxoplasma gondii infection.
    Zhou CX; Xie SC; Li MY; Huang CQ; Zhou HY; Cong H; Zhu XQ; Cong W
    J Proteomics; 2020 Jun; 222():103805. PubMed ID: 32387797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free proteomic analysis of placental proteins during Toxoplasma gondii infection.
    Jiao F; Zhang D; Jiang M; Mi J; Liu X; Zhang H; Hu Z; Xu X; Hu X
    J Proteomics; 2017 Jan; 150():31-39. PubMed ID: 27569050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CD28/B7 interaction is not required for resistance to Toxoplasma gondii in the brain but contributes to the development of immunopathology.
    Reichmann G; Villegas EN; Craig L; Peach R; Hunter CA
    J Immunol; 1999 Sep; 163(6):3354-62. PubMed ID: 10477605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection.
    He JJ; Ma J; Elsheikha HM; Song HQ; Huang SY; Zhu XQ
    Parasit Vectors; 2016 Aug; 9(1):427. PubMed ID: 27488578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection.
    Nie LB; Cong W; He JJ; Zheng WB; Zhu XQ
    Infect Dis Poverty; 2022 Sep; 11(1):96. PubMed ID: 36104766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urine proteomics for profiling of mouse toxoplasmosis using liquid chromatography tandem mass spectrometry analysis.
    Cui LL; Zhou CX; Han B; Wang SS; Li SY; Xie SC; Zhou DH
    Parasit Vectors; 2021 Apr; 14(1):211. PubMed ID: 33879238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of exposure to Toxoplasma Gondii on host lipid metabolism.
    Xu F; Lu X; Cheng R; Zhu Y; Miao S; Huang Q; Xu Y; Qiu L; Zhou Y
    BMC Infect Dis; 2020 Jun; 20(1):415. PubMed ID: 32539811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Host Defense Mechanisms against Toxoplasma gondii Infection in Anhedonic and Despair-Like Behaviors in Mice.
    Mahmoud ME; Fereig R; Nishikawa Y
    Infect Immun; 2017 Apr; 85(4):. PubMed ID: 28138019
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection.
    Portugal LR; Fernandes LR; Pietra Pedroso VS; Santiago HC; Gazzinelli RT; Alvarez-Leite JI
    Microbes Infect; 2008 Mar; 10(3):276-84. PubMed ID: 18316222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD44 mediated hyaluronan adhesion of Toxoplasma gondii-infected leukocytes.
    Hayashi T; Unno A; Baba M; Ohno T; Kitoh K; Takashima Y
    Parasitol Int; 2014 Apr; 63(2):479-84. PubMed ID: 24157443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.