BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2994827)

  • 1. A selective increase in phosporylation of protein F1, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement.
    Lovinger DM; Akers RF; Nelson RB; Barnes CA; McNaughton BL; Routtenberg A
    Brain Res; 1985 Sep; 343(1):137-43. PubMed ID: 2994827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C.
    Lovinger DM; Colley PA; Akers RF; Nelson RB; Routtenberg A
    Brain Res; 1986 Dec; 399(2):205-11. PubMed ID: 3828760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth.
    Routtenberg A
    Behav Neural Biol; 1985 Sep; 44(2):186-200. PubMed ID: 3904711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective decline in protein F1 phosphorylation in hippocampus of senescent rats.
    Barnes CA; Mizumori SJ; Lovinger DM; Sheu FS; Murakami K; Chan SY; Linden DJ; Nelson RB; Routtenberg A
    Neurobiol Aging; 1988; 9(4):393-8. PubMed ID: 3185858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase C phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity.
    Akers RF; Routtenberg A
    Brain Res; 1985 May; 334(1):147-51. PubMed ID: 3158377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity.
    Akers RF; Routtenberg A
    J Neurosci; 1987 Dec; 7(12):3976-83. PubMed ID: 3121805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of protein F1 (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity.
    Nelson RB; Routtenberg A
    Exp Neurol; 1985 Jul; 89(1):213-24. PubMed ID: 3159591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective increase in phosphorylation of a 47-kDa protein (F1) directly related to long-term potentiation.
    Routtenberg A; Lovinger DM
    Behav Neural Biol; 1985 Jan; 43(1):3-11. PubMed ID: 3158299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity.
    Chan SY; Murakami K; Routtenberg A
    J Neurosci; 1986 Dec; 6(12):3618-27. PubMed ID: 3794793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA receptor blockade prevents the increase in protein kinase C substrate (protein F1) phosphorylation produced by long-term potentiation.
    Linden DJ; Wong KL; Sheu FS; Routtenberg A
    Brain Res; 1988 Aug; 458(1):142-6. PubMed ID: 2905192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of the presynaptic protein B-50 (GAP-43) is increased during electrically induced long-term potentiation.
    Gianotti C; Nunzi MG; Gispen WH; Corradetti R
    Neuron; 1992 May; 8(5):843-8. PubMed ID: 1534012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase C and F1/GAP-43 gene expression in hippocampus inversely related to synaptic enhancement lasting 3 days.
    Meberg PJ; Barnes CA; McNaughton BL; Routtenberg A
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):12050-4. PubMed ID: 8265669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid and fatty acid regulation of signal transduction at synapses: potential role for protein kinase C in information storage.
    Routtenberg A
    J Neural Transm Suppl; 1987; 24():239-45. PubMed ID: 3316497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the coidentification of GAP-43, a growth-associated protein, and F1, a plasticity-associated protein.
    Snipes GJ; Chan SY; McGuire CB; Costello BR; Norden JJ; Freeman JA; Routtenberg A
    J Neurosci; 1987 Dec; 7(12):4066-75. PubMed ID: 3694262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of long-term enhancement and short-term exploratory modulation of perforant path synaptic transmission.
    Erickson CA; McNaughton BL; Barnes CA
    Brain Res; 1993 Jul; 615(2):275-80. PubMed ID: 8395959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with persistence of long-term potentiation.
    Nelson RB; Linden DJ; Hyman C; Pfenninger KH; Routtenberg A
    J Neurosci; 1989 Feb; 9(2):381-9. PubMed ID: 2918368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron-specific protein F1/GAP-43 shows substrate specificity for the beta subtype of protein kinase C.
    Sheu FS; Marais RM; Parker PJ; Bazan NG; Routtenberg A
    Biochem Biophys Res Commun; 1990 Sep; 171(3):1236-43. PubMed ID: 2145833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial-derived S100b protein selectively inhibits recombinant beta protein kinase C (PKC) phosphorylation of neuron-specific protein F1/GAP43.
    Sheu FS; Azmitia EC; Marshak DR; Parker PJ; Routtenberg A
    Brain Res Mol Brain Res; 1994 Jan; 21(1-2):62-6. PubMed ID: 8164523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphorylation in rat hippocampal synaptic plasma membranes in response to neurohypophyseal peptides.
    Hinko A; Kim Y; Pearlmutter AF
    Brain Res; 1986 Oct; 384(1):156-60. PubMed ID: 3790990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein F1 and protein kinase C may regulate the persistence, not the initiation, of synaptic potentiation in the hippocampus.
    Lovinger DM; Routtenberg A
    Adv Exp Med Biol; 1987; 221():313-30. PubMed ID: 3324691
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.