These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29948458)

  • 1. MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress.
    Zuluaga DL; Liuzzi V; Curci PL; Sonnante G
    Funct Integr Genomics; 2018 Nov; 18(6):645-657. PubMed ID: 29948458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage.
    Zuluaga DL; De Paola D; Janni M; Curci PL; Sonnante G
    PLoS One; 2017; 12(8):e0183253. PubMed ID: 28813501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The miRNAome of durum wheat: isolation and characterisation of conserved and novel microRNAs and their target genes.
    De Paola D; Zuluaga DL; Sonnante G
    BMC Genomics; 2016 Jul; 17():505. PubMed ID: 27448633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress.
    Liu H; Searle IR; Watson-Haigh NS; Baumann U; Mather DE; Able AJ; Able JA
    PLoS One; 2015; 10(11):e0142799. PubMed ID: 26562166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress.
    Kantar M; Lucas SJ; Budak H
    Planta; 2011 Mar; 233(3):471-84. PubMed ID: 21069383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of durum wheat microRNAs in leaf and root tissues.
    Fileccia V; Bertolini E; Ruisi P; Giambalvo D; Frenda AS; Cannarozzi G; Tadele Z; Crosatti C; Martinelli F
    Funct Integr Genomics; 2017 Sep; 17(5):583-598. PubMed ID: 28321518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miRNA-based drought regulation in wheat.
    Akdogan G; Tufekci ED; Uranbey S; Unver T
    Funct Integr Genomics; 2016 May; 16(3):221-33. PubMed ID: 26141043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress.
    Zhang S; Xu L; Zheng Q; Hu J; Jiang D; Dai T; Tian Z
    Planta; 2024 May; 259(6):151. PubMed ID: 38733553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes.
    Elazab A; Serret MD; Araus JL
    Planta; 2016 Jul; 244(1):125-44. PubMed ID: 26992389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum).
    Saidi MN; Mergby D; Brini F
    Plant Physiol Biochem; 2017 Mar; 112():117-128. PubMed ID: 28064119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress.
    Qiu Z; He Y; Zhang Y; Guo J; Wang L
    Ecotoxicol Environ Saf; 2018 Nov; 164():611-617. PubMed ID: 30153643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress.
    Akpinar BA; Kantar M; Budak H
    Funct Integr Genomics; 2015 Sep; 15(5):587-98. PubMed ID: 26174050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply.
    Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y
    Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.
    Rinaldo A; Gilbert B; Boni R; Krattinger SG; Singh D; Park RF; Lagudah E; Ayliffe M
    Plant Biotechnol J; 2017 Jul; 15(7):894-905. PubMed ID: 28005310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel durum wheat genes up-regulated in response to a combination of heat and drought stress.
    Rampino P; Mita G; Fasano P; Borrelli GM; Aprile A; Dalessandro G; De Bellis L; Perrotta C
    Plant Physiol Biochem; 2012 Jul; 56():72-8. PubMed ID: 22609457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.).
    Han R; Jian C; Lv J; Yan Y; Chi Q; Li Z; Wang Q; Zhang J; Liu X; Zhao H
    BMC Genomics; 2014 Apr; 15():289. PubMed ID: 24734873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of a gene network in durum wheat roots exposed to cadmium.
    Aprile A; Sabella E; Vergine M; Genga A; Siciliano M; Nutricati E; Rampino P; De Pascali M; Luvisi A; Miceli A; Negro C; De Bellis L
    BMC Plant Biol; 2018 Oct; 18(1):238. PubMed ID: 30326849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.).
    Hu H; He J; Zhao J; Ou X; Li H; Ru Z
    Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.