These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 29948978)
1. The Shielding Effect of Microcrystalline Cellulose on Drug Nanocrystal Particles During Compaction. Liu Y; Xiao H; Xie J; Zhang Z; Ma Y; Yue P; Yang M AAPS PharmSciTech; 2018 Aug; 19(6):2488-2498. PubMed ID: 29948978 [TBL] [Abstract][Full Text] [Related]
2. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction. Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239 [TBL] [Abstract][Full Text] [Related]
3. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. van Veen B; Bolhuis GK; Wu YS; Zuurman K; Frijlink HW Eur J Pharm Biopharm; 2005 Jan; 59(1):133-8. PubMed ID: 15567310 [TBL] [Abstract][Full Text] [Related]
4. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures. Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142 [TBL] [Abstract][Full Text] [Related]
5. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation. Mazel V; Busignies V; Duca S; Leclerc B; Tchoreloff P Int J Pharm; 2011 May; 410(1-2):92-8. PubMed ID: 21421038 [TBL] [Abstract][Full Text] [Related]
6. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose. Celik M; Ong JT; Chowhan ZT; Samuel GJ Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338 [TBL] [Abstract][Full Text] [Related]
7. An experimental investigation of temperature rise during compaction of pharmaceutical powders. Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333 [TBL] [Abstract][Full Text] [Related]
8. The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. Picker KM Eur J Pharm Biopharm; 1999 Jul; 48(1):27-36. PubMed ID: 10477325 [TBL] [Abstract][Full Text] [Related]
9. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties. Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689 [TBL] [Abstract][Full Text] [Related]
10. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. Gupta A; Peck GE; Miller RW; Morris KR J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545 [TBL] [Abstract][Full Text] [Related]
11. MCC-mannitol mixtures after roll compaction/dry granulation: percolation thresholds for ribbon microhardness and granule size distribution. Pérez Gago A; Kleinebudde P Pharm Dev Technol; 2017 Sep; 22(6):764-774. PubMed ID: 27055487 [TBL] [Abstract][Full Text] [Related]
12. On the die compaction of powders used in pharmaceutics. Aryanpour G; Farzaneh M Pharm Dev Technol; 2018 Jul; 23(6):628-635. PubMed ID: 28631521 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products. Pawar K; Render D; Rangari V; Lee Y; Babu RJ Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the tabletting behaviour of microcrystalline cellulose pellets by the incorporation of polyethylene glycol. Nicklasson F; Alderborn G Eur J Pharm Sci; 1999 Oct; 9(1):57-65. PubMed ID: 10493997 [TBL] [Abstract][Full Text] [Related]
15. Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose. Kaerger JS; Edge S; Price R Eur J Pharm Sci; 2004 Jun; 22(2-3):173-9. PubMed ID: 15158902 [TBL] [Abstract][Full Text] [Related]
16. The effect of ultrasonic vibration on the compaction characteristics of ibuprofen. Levina M; Rubinstein MH Drug Dev Ind Pharm; 2002 May; 28(5):495-514. PubMed ID: 12098839 [TBL] [Abstract][Full Text] [Related]
17. A study on the coherence of compacted binary composites of microcrystalline cellulose and paracetamol. Mohammed H; Briscoe BJ; Pitt KG Eur J Pharm Biopharm; 2006 May; 63(1):19-25. PubMed ID: 16326083 [TBL] [Abstract][Full Text] [Related]
18. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring. Abdel-Hamid S; Alshihabi F; Betz G Int J Pharm; 2011 Jul; 413(1-2):29-35. PubMed ID: 21515348 [TBL] [Abstract][Full Text] [Related]
19. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders. Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809 [TBL] [Abstract][Full Text] [Related]
20. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]