BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29949209)

  • 1. Charge- and Size-Complementary Multimetal-Induced Morphology and Phase Control in Zeolite-Type Metal Chalcogenides.
    Chen X; Bu X; Wang Y; Lin Q; Feng P
    Chemistry; 2018 Jul; 24(42):10812-10819. PubMed ID: 29949209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pushing up the size limit of chalcogenide supertetrahedral clusters: two- and three-dimensional photoluminescent open frameworks from (Cu(5)In(30)S(54))(13-) clusters.
    Bu X; Zheng N; Li Y; Feng P
    J Am Chem Soc; 2002 Oct; 124(43):12646-7. PubMed ID: 12392396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation-Exchanged Zeolitic Chalcogenides for CO
    Yang H; Luo M; Chen X; Zhao X; Lin J; Hu D; Li D; Bu X; Feng P; Wu T
    Inorg Chem; 2017 Dec; 56(24):14999-15005. PubMed ID: 29192766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Ion Exchange and Photocatalysis by Zeolite-Like Semiconducting Chalcogenide.
    Chen X; Bu X; Lin Q; Mao C; Zhai QG; Wang Y; Feng P
    Chemistry; 2017 Sep; 23(49):11913-11919. PubMed ID: 28799213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Largest molecular clusters in the supertetrahedral Tn series.
    Wu T; Wang L; Bu X; Chau V; Feng P
    J Am Chem Soc; 2010 Aug; 132(31):10823-31. PubMed ID: 20681716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel.
    Sasan K; Lin Q; Mao C; Feng P
    Nanoscale; 2016 Jun; 8(21):10913-6. PubMed ID: 27186825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coassembly between the largest and smallest metal chalcogenide supertetrahedral clusters.
    Wang L; Wu T; Bu X; Zhao X; Zuo F; Feng P
    Inorg Chem; 2013 Mar; 52(5):2259-61. PubMed ID: 23421915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.
    Lin Q; Bu X; Mao C; Zhao X; Sasan K; Feng P
    J Am Chem Soc; 2015 May; 137(19):6184-7. PubMed ID: 25950820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase selection and site-selective distribution by tin and sulfur in supertetrahedral zinc gallium selenides.
    Wu T; Bu X; Zhao X; Khazhakyan R; Feng P
    J Am Chem Soc; 2011 Jun; 133(24):9616-25. PubMed ID: 21595469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster.
    Xu X; Wang W; Liu D; Hu D; Wu T; Bu X; Feng P
    J Am Chem Soc; 2018 Jan; 140(3):888-891. PubMed ID: 29337544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity.
    Zheng N; Bu X; Feng P
    Nature; 2003 Nov; 426(6965):428-32. PubMed ID: 14647378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity.
    Mao C; Wang Y; Jiao W; Chen X; Lin Q; Deng M; Ling Y; Zhou Y; Bu X; Feng P
    Langmuir; 2017 Nov; 33(47):13634-13639. PubMed ID: 29139299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design.
    Hendon CH; Butler KT; Ganose AM; Román-Leshkov Y; Scanlon DO; Ozin GA; Walsh A
    Chem Mater; 2017 Apr; 29(8):3663-3670. PubMed ID: 28572706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interface chemistry between chalcogenide clusters and open framework chalcogenides.
    Feng P; Bu X; Zheng N
    Acc Chem Res; 2005 Apr; 38(4):293-303. PubMed ID: 15835876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrupted chalcogenide-based zeolite-analogue semiconductor: atomically precise doping for tunable electro-/photoelectrochemical properties.
    Lin J; Dong Y; Zhang Q; Hu D; Li N; Wang L; Liu Y; Wu T
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5103-7. PubMed ID: 25727727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrahedral chalcogenide clusters and open frameworks.
    Bu X; Zheng N; Feng P
    Chemistry; 2004 Jul; 10(14):3356-62. PubMed ID: 15252781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.
    Greer H; Wheatley PS; Ashbrook SE; Morris RE; Zhou W
    J Am Chem Soc; 2009 Dec; 131(49):17986-92. PubMed ID: 19919054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking zeolite to its core: porous sodalite cages as hangers for pendant trimeric M3(OH) clusters (M = Mg, Mn, Co, Ni, Cd).
    Zheng ST; Wu T; Zuo F; Chou C; Feng P; Bu X
    J Am Chem Soc; 2012 Feb; 134(4):1934-7. PubMed ID: 22280215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility, and Their Functional Applications.
    Zhang J; Bu X; Feng P; Wu T
    Acc Chem Res; 2020 Oct; 53(10):2261-2272. PubMed ID: 32877164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties.
    Yang DD; Li W; Xiong WW; Li JR; Huang XY
    Dalton Trans; 2018 May; 47(17):5977-5984. PubMed ID: 29589630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.