These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 29949243)

  • 41. TMS-induced theta phase synchrony reveals a bottom-up network in working memory.
    Miyauchi E; Kitajo K; Kawasaki M
    Neurosci Lett; 2016 May; 622():10-4. PubMed ID: 27063284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.
    Rademaker RL; van de Ven VG; Tong F; Sack AT
    PLoS One; 2017; 12(4):e0175230. PubMed ID: 28384347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions.
    Zhong G; Yang Z; Jiang T
    Neurosci Bull; 2021 Dec; 37(12):1718-1734. PubMed ID: 34609737
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brain activity underlying visual perception and attention as inferred from TMS-EEG: a review.
    Taylor PC; Thut G
    Brain Stimul; 2012 Apr; 5(2):124-9. PubMed ID: 22494831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review.
    Horvath JC; Forte JD; Carter O
    Neuropsychologia; 2015 Jan; 66():213-36. PubMed ID: 25448853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcranial magnetic stimulation and neuroimaging for cocaine use disorder: Review and future directions.
    Shen Y; Ward HB
    Am J Drug Alcohol Abuse; 2021 Mar; 47(2):144-153. PubMed ID: 33216666
    [No Abstract]   [Full Text] [Related]  

  • 47. Focal neural perturbations reshape low-dimensional trajectories of brain activity supporting cognitive performance.
    Iyer KK; Hwang K; Hearne LJ; Muller E; D'Esposito M; Shine JM; Cocchi L
    Nat Commun; 2022 Jan; 13(1):4. PubMed ID: 35013147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI.
    Bohning DE; Pecheny AP; Epstein CM; Speer AM; Vincent DJ; Dannels W; George MS
    Neuroreport; 1997 Jul; 8(11):2535-8. PubMed ID: 9261822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strength-Duration Relationship in Paired-pulse Transcranial Magnetic Stimulation (TMS) and Its Implications for Repetitive TMS.
    Shirota Y; Sommer M; Paulus W
    Brain Stimul; 2016; 9(5):755-761. PubMed ID: 27234142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioelectromagnetism in Human Brain Research: New Applications, New Questions.
    Gross J; Junghöfer M; Wolters C
    Neuroscientist; 2023 Feb; 29(1):62-77. PubMed ID: 34873945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans.
    Osaka N; Otsuka Y; Hirose N; Ikeda T; Mima T; Fukuyama H; Osaka M
    Neurosci Lett; 2007 May; 418(3):232-5. PubMed ID: 17467169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping causal interregional influences with concurrent TMS-fMRI.
    Bestmann S; Ruff CC; Blankenburg F; Weiskopf N; Driver J; Rothwell JC
    Exp Brain Res; 2008 Dec; 191(4):383-402. PubMed ID: 18936922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A high-resolution computational localization method for transcranial magnetic stimulation mapping.
    Aonuma S; Gomez-Tames J; Laakso I; Hirata A; Takakura T; Tamura M; Muragaki Y
    Neuroimage; 2018 May; 172():85-93. PubMed ID: 29360575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. State-dependency in brain stimulation studies of perception and cognition.
    Silvanto J; Muggleton N; Walsh V
    Trends Cogn Sci; 2008 Dec; 12(12):447-54. PubMed ID: 18951833
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Different hemispheric specializations for pitch and audioverbal working memory.
    Imm JH; Kang E; Youn T; Park H; Kim JI; Kang JI; Kim SJ; Lee JD; Park HJ
    Neuroreport; 2008 Jan; 19(1):99-103. PubMed ID: 18281901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing motor function in young children with transcranial magnetic stimulation.
    Narayana S; Rezaie R; McAfee SS; Choudhri AF; Babajani-Feremi A; Fulton S; Boop FA; Wheless JW; Papanicolaou AC
    Pediatr Neurol; 2015 Jan; 52(1):94-103. PubMed ID: 25439485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interfering with working memory in humans.
    Mottaghy FM
    Neuroscience; 2006 Apr; 139(1):85-90. PubMed ID: 16337091
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Imaging the brain before, during, and after transcranial magnetic stimulation.
    Paus T
    Neuropsychologia; 1999 Feb; 37(2):219-24. PubMed ID: 10080379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Short-latency artifacts associated with concurrent TMS-EEG.
    Rogasch NC; Thomson RH; Daskalakis ZJ; Fitzgerald PB
    Brain Stimul; 2013 Nov; 6(6):868-76. PubMed ID: 23651674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of long-term high frequency repetitive transcranial magnetic stimulation on working memory in schizophrenia and healthy controls--a randomized placebo-controlled, double-blind fMRI study.
    Guse B; Falkai P; Gruber O; Whalley H; Gibson L; Hasan A; Obst K; Dechent P; McIntosh A; Suchan B; Wobrock T
    Behav Brain Res; 2013 Jan; 237():300-7. PubMed ID: 23022750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.