BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29949352)

  • 1. Mechanistic Understanding of Uranyl Ion Complexation on Montmorillonite Edges: A Combined First-Principles Molecular Dynamics-Surface Complexation Modeling Approach.
    Zhang C; Liu X; Tinnacher RM; Tournassat C
    Environ Sci Technol; 2018 Aug; 52(15):8501-8509. PubMed ID: 29949352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling.
    Kowal-Fouchard A; Drot R; Simoni E; Ehrhardt JJ
    Environ Sci Technol; 2004 Mar; 38(5):1399-407. PubMed ID: 15046340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling.
    Chisholm-Brause CJ; Berg JM; Little KM; Matzner RA; Morris DE
    J Colloid Interface Sci; 2004 Sep; 277(2):366-82. PubMed ID: 15341848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study.
    Yang W; Zaoui A
    J Hazard Mater; 2013 Oct; 261():224-34. PubMed ID: 23933290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid-Base Properties of Cis-Vacant Montmorillonite Edge Surfaces: A Combined First-Principles Molecular Dynamics and Surface Complexation Modeling Approach.
    Gao P; Liu X; Guo Z; Tournassat C
    Environ Sci Technol; 2023 Jan; 57(3):1342-52. PubMed ID: 36627109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranyl Arsenate Complexes in Aqueous Solution: Insights from First-Principles Molecular Dynamics Simulations.
    He M; Liu X; Cheng J; Lu X; Zhang C; Wang R
    Inorg Chem; 2018 May; 57(10):5801-5809. PubMed ID: 29741893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces.
    Kerisit S; Liu C
    Environ Sci Technol; 2014 Apr; 48(7):3899-907. PubMed ID: 24580048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.
    Meleshyn A; Azeroual M; Reeck T; Houben G; Riebe B; Bunnenberg C
    Environ Sci Technol; 2009 Jul; 43(13):4896-901. PubMed ID: 19673282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface.
    Greathouse JA; Cygan RT
    Phys Chem Chem Phys; 2005 Oct; 7(20):3580-6. PubMed ID: 16294234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into U(VI) sorption onto montmorillonite from batch sorption and spectroscopic studies at increased ionic strength.
    Stockmann M; Fritsch K; Bok F; Fernandes MM; Baeyens B; Steudtner R; Müller K; Nebelung C; Brendler V; Stumpf T; Schmeide K
    Sci Total Environ; 2022 Feb; 806(Pt 2):150653. PubMed ID: 34597569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-liquid extraction of uranyl by TBP: the TBP and ions models and related interfacial features revisited by MD and PMF simulations.
    Benay G; Wipff G
    J Phys Chem B; 2014 Mar; 118(11):3133-49. PubMed ID: 24601645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.
    Fernandes MM; Scheinost AC; Baeyens B
    Water Res; 2016 Aug; 99():74-82. PubMed ID: 27140904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of multinuclear U(VI) species on the hydroxylated α-SiO
    Gao P; Jin Q; Chen Z; Wang D; Tournassat C; Guo Z
    Phys Chem Chem Phys; 2024 Jan; 26(5):4125-4134. PubMed ID: 38226632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model.
    Reinoso-Maset E; Ly J
    J Environ Radioact; 2016 Jun; 157():136-48. PubMed ID: 27077702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling.
    Zhao Y; Gu X; Li S; Han R; Wang G
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):17031-40. PubMed ID: 26122570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of uranyl on hydroxylated α-SiO₂(001): a first-principle study.
    Wang H; Chai Z; Wang D
    Dalton Trans; 2015 Jan; 44(4):1646-54. PubMed ID: 25437449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Heterogeneous Nucleation of Heavy Metal Phyllosilicates on Clay Edges with First-Principles Molecular Dynamics.
    Zhang C; Liu X; Lu X; Meijer EJ; Wang R
    Environ Sci Technol; 2019 Dec; 53(23):13704-13712. PubMed ID: 31697489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Acidity and As(V) Complexation of Iron Oxyhydroxides: Insights from First-Principles Molecular Dynamics Simulations.
    Zhang Y; Liu X; Cheng J; Lu X
    Environ Sci Technol; 2021 Dec; 55(23):15921-15928. PubMed ID: 34817156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.