BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2994939)

  • 1. Adrenergic receptors: molecular mechanisms of clinically relevant regulation.
    Lefkowitz RJ; Caron MG
    Clin Res; 1985 Sep; 33(3):395-406. PubMed ID: 2994939
    [No Abstract]   [Full Text] [Related]  

  • 2. beta-Adrenergic receptors and regulatory GTP-binding proteins: reconstitution of coupling in phospholipid vesicles.
    Asano T; Brandt DR; Pedersen SE; Ross EM
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():47-56. PubMed ID: 2988304
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical characterization of the adrenergic receptors: affinity labeling, purification, and reconstitution studies.
    Caron MG; Cerione RA; Benovic JL; Strulovici B; Staniszewski C; Lefkowitz RJ; Codina-Salada J; Birnbaumer L
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():1-12. PubMed ID: 2988293
    [No Abstract]   [Full Text] [Related]  

  • 4. The adrenergic receptors.
    Lefkowitz RJ; Caron MG
    Adv Second Messenger Phosphoprotein Res; 1990; 24():1-8. PubMed ID: 1976327
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of hormone receptor-effector coupling: the beta-adrenergic receptor and adenylate cyclase.
    Lefkowitz RJ; Caron MG; Michel T; Stadel JM
    Fed Proc; 1982 Aug; 41(10):2664-70. PubMed ID: 6125416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ciba-Geigy award for outstanding research. Regulation of adrenergic receptor function by phosphorylation.
    Lefkowitz RJ; Caron MG
    J Mol Cell Cardiol; 1986 Sep; 18(9):885-95. PubMed ID: 3023644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the beta-adrenergic receptor kinase in desensitization of the alpha 2-adrenergic receptor.
    Liggett SB; Ostrowski J; Chesnut LC; Caron MG; Lefkowitz RJ
    Trans Assoc Am Physicians; 1991; 104():40-7. PubMed ID: 1668989
    [No Abstract]   [Full Text] [Related]  

  • 8. Demonstration of beta-2 adrenergic receptors of high coupling efficiency in human neutrophil sonicates.
    Galant SP; Allred SJ
    J Lab Clin Med; 1980 Jul; 96(1):15-23. PubMed ID: 6248606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-adrenergic receptors and responses in the heart.
    Reuter H; Porzig H
    Postgrad Med J; 1981; 57 Suppl 1():62-70. PubMed ID: 6272252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.
    Zeiders JL; Seidler FJ; Slotkin TA
    J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of cyclic nucleotides in adrenergic and cholinergic regulation of the heart].
    Sorokin LV
    Usp Fiziol Nauk; 1980; 11(1):120-39. PubMed ID: 6102833
    [No Abstract]   [Full Text] [Related]  

  • 12. Beta-adrenergic receptor regulation of a cyclic AMP phosphodiesterase in C6 glioma cells.
    Schwartz JP; Onali P
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():195-203. PubMed ID: 6326524
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular pharmacology of adenylate cyclase-coupled alpha- and beta-adrenergic receptors.
    Lefkowitz RJ; De Lean A; Hoffman BB; Stadel JM; Kent R; Michel T; Limbird L
    Adv Cyclic Nucleotide Res; 1981; 14():145-61. PubMed ID: 6269377
    [No Abstract]   [Full Text] [Related]  

  • 14. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins.
    Slotkin TA; Lau C; Seidler FJ
    Toxicol Appl Pharmacol; 1994 Dec; 129(2):223-34. PubMed ID: 7992312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenergic receptors: biochemistry, regulation, molecular mechanism, and clinical implications.
    Heinsimer JA; Lefkowitz RJ
    J Lab Clin Med; 1982 Nov; 100(5):641-58. PubMed ID: 6127370
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein.
    Benovic JL; Pike LJ; Cerione RA; Staniszewski C; Yoshimasa T; Codina J; Caron MG; Lefkowitz RJ
    J Biol Chem; 1985 Jun; 260(11):7094-101. PubMed ID: 2987243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of beta-adrenergic receptors: regulation at the molecular level.
    Lefkowitz RJ; Stadel JM; Cerione RA; Strulovici B; Caron MG
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():19-28. PubMed ID: 6145320
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro study of beta-adrenergic receptors.
    Wolfe BB; Harden TK; Molinoff PB
    Annu Rev Pharmacol Toxicol; 1977; 17():575-604. PubMed ID: 17362
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of receptor-stimulated and basal guanine nucleotide binding to membrane G proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Friedman E; Butkerait P; Wang HY
    Anal Biochem; 1993 Oct; 214(1):171-8. PubMed ID: 8250222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.