BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29949520)

  • 1. The effect of DNA on the oxidase activity of nanoceria with different morphologies.
    Yang D; Fa M; Gao L; Zhao R; Luo Y; Yao X
    Nanotechnology; 2018 Sep; 29(38):385101. PubMed ID: 29949520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion and Inhibition of the Oxidase-Mimicking Activity of Nanoceria by Phosphate, Polyphosphate, and DNA.
    Zhao Y; Li H; Lopez A; Su H; Liu J
    Chembiochem; 2020 Aug; 21(15):2178-2186. PubMed ID: 32181558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching.
    Pautler R; Kelly EY; Huang PJ; Cao J; Liu B; Liu J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6820-5. PubMed ID: 23863107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cerium redox state in the SOD mimetic activity of nanoceria.
    Heckert EG; Karakoti AS; Seal S; Self WT
    Biomaterials; 2008 Jun; 29(18):2705-9. PubMed ID: 18395249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces.
    Singh S
    Biointerphases; 2016 Nov; 11(4):04B202. PubMed ID: 27806579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrophotometric determination of the activity of alkaline phosphatase and detection of its inhibitors by exploiting the pyrophosphate-accelerated oxidase-like activity of nanoceria.
    Ni P; Xie J; Chen C; Jiang Y; Zhao Z; Zhang Y; Lu Y; Yu J
    Mikrochim Acta; 2019 May; 186(5):320. PubMed ID: 31049712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoceria as a DNase I mimicking nanozyme.
    Xu F; Lu Q; Huang PJ; Liu J
    Chem Commun (Camb); 2019 Oct; 55(88):13215-13218. PubMed ID: 31577297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo toxicological evaluation of polymer brush engineered nanoceria: impact of brush charge.
    Catalán J; Fascineli ML; Politakos N; Hartikainen M; Garcia MP; Cáceres-Vélez PR; Moreno C; Silva SWD; Morais PC; Norppa H; Moya SE; Azevedo RB
    Nanotoxicology; 2019 Apr; 13(3):305-325. PubMed ID: 30582398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convenient Colorimetric Detection of Thrombin via Aptamer-Mediated Inhibition and Restoration of the Oxidase Activity of Nanoceria.
    Song HP; Jang JY; Bae SH; Choi SB; Yu BJ; Kim MI
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6570-6574. PubMed ID: 29677836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoceria-Templated Metal Organic Frameworks with Oxidase-Mimicking Activity Boosted by Hexavalent Chromium.
    Wang Y; Liang RP; Qiu JD
    Anal Chem; 2020 Jan; 92(2):2339-2346. PubMed ID: 31865699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues.
    Lord MS; Berret JF; Singh S; Vinu A; Karakoti AS
    Small; 2021 Dec; 17(51):e2102342. PubMed ID: 34363314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies.
    Zhao Y; Wang Y; Mathur A; Wang Y; Maheshwari V; Su H; Liu J
    Nanoscale; 2019 Oct; 11(38):17841-17850. PubMed ID: 31552980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Fabrication of Nanoceria with Oxidase-like Activity at Neutral pH: Mechanism and Boosted Bio-Nanozyme Cascades.
    Zhang J; Wang J; Liao J; Lin Y; Zheng C; Liu J
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50236-50245. PubMed ID: 34636532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Oxidase Mimetic Activity of Ceria Nanoparticles by Buffer Composition.
    Wu Y; Yang L; Wu Q; Liu Q; Zou L; Yang X; Tang K
    Chemistry; 2023 May; 29(29):e202204071. PubMed ID: 36879435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoride-assisted detection of glutathione by surface Ce
    Patel V; Jose L; Philippot G; Aymonier C; Inerbaev T; McCourt LR; Ruppert MG; Qi D; Li W; Qu J; Zheng R; Cairney J; Yi J; Vinu A; Karakoti AS
    J Mater Chem B; 2022 Dec; 10(47):9855-9868. PubMed ID: 36415972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L.
    Singh A; Hussain I; Singh NB; Singh H
    Ecotoxicol Environ Saf; 2019 Oct; 182():109410. PubMed ID: 31284122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes.
    Wang Z; Shen X; Gao X; Zhao Y
    Nanoscale; 2019 Jul; 11(28):13289-13299. PubMed ID: 31287483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA.
    Estevez AY; Ganesana M; Trentini JF; Olson JE; Li G; Boateng YO; Lipps JM; Yablonski SER; Donnelly WT; Leiter JC; Erlichman JS
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31623336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A colorimetric heparin assay based on the inhibition of the oxidase mimicking activity of cerium oxide nanoparticles.
    Liao H; Liu Y; Chen M; Wang M; Yuan H; Hu L
    Mikrochim Acta; 2019 Apr; 186(5):274. PubMed ID: 30969368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.