These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29949908)

  • 1. Cutting-Processed Single-Wall Carbon Nanotubes with Additional Edge Sites for Supercapacitor Electrodes.
    Kim T; Kim MK; Park Y; Kim E; Kim J; Ryu W; Jeong HM; Kim K
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29949908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J; Song Z; Liu X; Lü W; Li X
    Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of carbon nanotube-supported NiO//Fe
    Zhang S; Wang X; Li Y; Mu X; Zhang Y; Du J; Liu G; Hua X; Sheng Y; Xie E; Zhang Z
    Beilstein J Nanotechnol; 2019; 10():1923-1932. PubMed ID: 31598459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes.
    Higgins TM; McAteer D; Coelho JC; Mendoza Sanchez B; Gholamvand Z; Moriarty G; McEvoy N; Berner NC; Duesberg GS; Nicolosi V; Coleman JN
    ACS Nano; 2014 Sep; 8(9):9567-79. PubMed ID: 25199042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-Doped Carbon Nanotube Spherical Particles for Supercapacitor Applications: Emulsion-Assisted Compact Packing and Capacitance Enhancement.
    Gueon D; Moon JH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20083-9. PubMed ID: 26325508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a "top-down" approach.
    Zhang T; Kim CH; Cheng Y; Ma Y; Zhang H; Liu J
    Nanoscale; 2015 Feb; 7(7):3285-91. PubMed ID: 25623779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P-Doped NiCo
    Lin J; Wang Y; Zheng X; Liang H; Jia H; Qi J; Cao J; Tu J; Fei W; Feng J
    Dalton Trans; 2018 Jul; 47(26):8771-8778. PubMed ID: 29916517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.
    Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK
    ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors.
    Aphale A; Maisuria K; Mahapatra MK; Santiago A; Singh P; Patra P
    Sci Rep; 2015 Sep; 5():14445. PubMed ID: 26395922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Universal Electrolyte Formulation for the Electrodeposition of Pristine Carbon and Polypyrrole Composites for Supercapacitors.
    Ji S; Yang J; Cao J; Zhao X; Mohammed MA; He P; Dryfe RAW; Kinloch IA
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13386-13399. PubMed ID: 32101407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor.
    Wang X; Wu D; Song X; Du W; Zhao X; Zhang D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31216668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors.
    Yu L; Wang G; Wan G; Wang G; Lin S; Li X; Wang K; Bai Z; Xiang Y
    Dalton Trans; 2016 Sep; 45(35):13779-86. PubMed ID: 27481216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-Soft Supercapacitors Based on Liquid Metal Electrodes with Integrated Functionalized Carbon Nanotubes.
    Kim MG; Lee B; Li M; Noda S; Kim C; Kim J; Song WJ; Lee SW; Brand O
    ACS Nano; 2020 May; 14(5):5659-5667. PubMed ID: 32379413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeleton-Structure WS
    Yang X; Li J; Hou C; Zhang Q; Li Y; Wang H
    Front Chem; 2020; 8():442. PubMed ID: 32596203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Hierarchical CNT/rGO-Supported MnMoO
    Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons.
    Raymundo-Piñero E; Cadek M; Wachtler M; Béguin F
    ChemSusChem; 2011 Jul; 4(7):943-9. PubMed ID: 21302364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotube@N-Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes.
    Fu X; Chen A; Yu Y; Hou S; Liu L
    Chem Asian J; 2019 Mar; 14(5):634-639. PubMed ID: 30614651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.