These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29949957)

  • 1. A novel methodology on distributed representations of proteins using their interacting ligands.
    Öztürk H; Ozkirimli E; Özgür A
    Bioinformatics; 2018 Jul; 34(13):i295-i303. PubMed ID: 29949957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learned protein embeddings for machine learning.
    Yang KK; Wu Z; Bedbrook CN; Arnold FH
    Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granular clustering of de novo protein models.
    Guzenko D; Strelkov SV
    Bioinformatics; 2017 Feb; 33(3):390-396. PubMed ID: 28171609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Protein-Ligand Interaction Based on the Positional Similarity Scores Derived from Amino Acid Sequences.
    Karasev D; Sobolev B; Lagunin A; Filimonov D; Poroikov V
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering protein environments for function prediction: finding PROSITE motifs in 3D.
    Yoon S; Ebert JC; Chung EY; De Micheli G; Altman RB
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S10. PubMed ID: 17570144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patch-DCA: improved protein interface prediction by utilizing structural information and clustering DCA scores.
    Vajdi A; Zarringhalam K; Haspel N
    Bioinformatics; 2020 Mar; 36(5):1460-1467. PubMed ID: 31621841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to analyze the similarity of protein structure using TOPS representations.
    Guo Y; Wang TM
    J Biomol Struct Dyn; 2008 Dec; 26(3):367-74. PubMed ID: 18808202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using an alignment of fragment strings for comparing protein structures.
    Friedberg I; Harder T; Kolodny R; Sitbon E; Li Z; Godzik A
    Bioinformatics; 2007 Jan; 23(2):e219-24. PubMed ID: 17237095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.
    Chen D; Wang J; Yan M; Bao FS
    J Comput Biol; 2016 Aug; 23(8):669-77. PubMed ID: 27249328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChemBoost: A Chemical Language Based Approach for Protein - Ligand Binding Affinity Prediction.
    Özçelik R; Öztürk H; Özgür A; Ozkirimli E
    Mol Inform; 2021 May; 40(5):e2000212. PubMed ID: 33225594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and improvements of clustering algorithms for detecting remote homologous protein families.
    Bernardes JS; Vieira FR; Costa LM; Zaverucha G
    BMC Bioinformatics; 2015 Feb; 16():34. PubMed ID: 25651949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting ligand binding residues and functional sites using multipositional correlations with graph theoretic clustering and kernel CCA.
    González AJ; Liao L; Wu CH
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):992-1001. PubMed ID: 22025754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR
    Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function.
    Villegas-Morcillo A; Makrodimitris S; van Ham RCHJ; Gomez AM; Sanchez V; Reinders MJT
    Bioinformatics; 2021 Apr; 37(2):162-170. PubMed ID: 32797179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data.
    Xia CQ; Pan X; Shen HB
    Bioinformatics; 2020 May; 36(10):3018-3027. PubMed ID: 32091580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.