These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29949961)

  • 1. DisruPPI: structure-based computational redesign algorithm for protein binding disruption.
    Choi Y; Furlon JM; Amos RB; Griswold KE; Bailey-Kellogg C
    Bioinformatics; 2018 Jul; 34(13):i245-i253. PubMed ID: 29949961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.
    Choi Y; Verma D; Griswold KE; Bailey-Kellogg C
    Methods Mol Biol; 2017; 1529():375-398. PubMed ID: 27914063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost function network-based design of protein-protein interactions: predicting changes in binding affinity.
    Viricel C; de Givry S; Schiex T; Barbe S
    Bioinformatics; 2018 Aug; 34(15):2581-2589. PubMed ID: 29474517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the Effect of Mutations on Protein Folding and Protein-Protein Interactions.
    Strokach A; Corbi-Verge C; Teyra J; Kim PM
    Methods Mol Biol; 2019; 1851():1-17. PubMed ID: 30298389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubis: a webserver to reduce protein aggregation through mutation.
    Van Durme J; De Baets G; Van Der Kant R; Ramakers M; Ganesan A; Wilkinson H; Gallardo R; Rousseau F; Schymkowitz J
    Protein Eng Des Sel; 2016 Aug; 29(8):285-9. PubMed ID: 27284085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanisms of protein interactions: predicting their affinity from unbound tertiary structures.
    Marín-López MA; Planas-Iglesias J; Aguirre-Plans J; Bonet J; Garcia-Garcia J; Fernandez-Fuentes N; Oliva B
    Bioinformatics; 2018 Feb; 34(4):592-598. PubMed ID: 29028891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes.
    Geng C; Vangone A; Bonvin AMJJ
    Protein Eng Des Sel; 2016 Aug; 29(8):291-299. PubMed ID: 27284087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting protein-DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver.
    Peng Y; Sun L; Jia Z; Li L; Alexov E
    Bioinformatics; 2018 Mar; 34(5):779-786. PubMed ID: 29091991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions.
    Hallen MA; Donald BR
    Bioinformatics; 2017 Jul; 33(14):i5-i12. PubMed ID: 28882005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UEP: an open-source and fast classifier for predicting the impact of mutations in protein-protein complexes.
    Amengual-Rigo P; Fernández-Recio J; Guallar V
    Bioinformatics; 2021 Apr; 37(3):334-341. PubMed ID: 32761082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mGPfusion: predicting protein stability changes with Gaussian process kernel learning and data fusion.
    Jokinen E; Heinonen M; Lähdesmäki H
    Bioinformatics; 2018 Jul; 34(13):i274-i283. PubMed ID: 29949987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.
    Komiyama Y; Banno M; Ueki K; Saad G; Shimizu K
    Bioinformatics; 2016 Mar; 32(6):901-7. PubMed ID: 26545824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of protein stability predictors.
    Khan S; Vihinen M
    Hum Mutat; 2010 Jun; 31(6):675-84. PubMed ID: 20232415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
    Romero-Durana M; Pallara C; Glaser F; Fernández-Recio J
    Methods Mol Biol; 2017; 1529():139-159. PubMed ID: 27914049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation.
    Usmanova DR; Bogatyreva NS; Ariño Bernad J; Eremina AA; Gorshkova AA; Kanevskiy GM; Lonishin LR; Meister AV; Yakupova AG; Kondrashov FA; Ivankov DN
    Bioinformatics; 2018 Nov; 34(21):3653-3658. PubMed ID: 29722803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.