BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29949967)

  • 1. Gene prioritization using Bayesian matrix factorization with genomic and phenotypic side information.
    Zakeri P; Simm J; Arany A; ElShal S; Moreau Y
    Bioinformatics; 2018 Jul; 34(13):i447-i456. PubMed ID: 29949967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion.
    Kumar AA; Van Laer L; Alaerts M; Ardeshirdavani A; Moreau Y; Laukens K; Loeys B; Vandeweyer G
    Bioinformatics; 2018 Jul; 34(13):2254-2262. PubMed ID: 29452392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate gene prioritization with Endeavour.
    Tranchevent LC; Ardeshirdavani A; ElShal S; Alcaide D; Aerts J; Auboeuf D; Moreau Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W117-21. PubMed ID: 27131783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of vocabularies, representations and ranking algorithms for gene prioritization by text mining.
    Yu S; Van Vooren S; Tranchevent LC; De Moor B; Moreau Y
    Bioinformatics; 2008 Aug; 24(16):i119-25. PubMed ID: 18689812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion.
    Zhang W; Xu H; Li X; Gao Q; Wang L
    Bioinformatics; 2020 May; 36(9):2839-2847. PubMed ID: 31999326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data.
    Pontikos N; Yu J; Moghul I; Withington L; Blanco-Kelly F; Vulliamy T; Wong TLE; Murphy C; Cipriani V; Fiorentino A; Arno G; Greene D; Jacobsen JOB; Clark T; Gregory DS; Nemeth AM; Halford S; Inglehearn CF; Downes S; Black GC; Webster AR; Hardcastle AJ; ; Plagnol V
    Bioinformatics; 2017 Aug; 33(15):2421-2423. PubMed ID: 28334266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization.
    Luo Y; Mao C; Yang Y; Wang F; Ahmad FS; Arnett D; Irvin MR; Shah SJ
    Bioinformatics; 2019 Apr; 35(8):1395-1403. PubMed ID: 30239588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations.
    Fu G; Wang J; Domeniconi C; Yu G
    Bioinformatics; 2018 May; 34(9):1529-1537. PubMed ID: 29228285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization.
    Antanaviciute A; Watson CM; Harrison SM; Lascelles C; Crinnion L; Markham AF; Bonthron DT; Carr IM
    Bioinformatics; 2015 Dec; 31(23):3822-9. PubMed ID: 26272982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting synthetic lethal interactions using heterogeneous data sources.
    Liany H; Jeyasekharan A; Rajan V
    Bioinformatics; 2020 Apr; 36(7):2209-2216. PubMed ID: 31782759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Random Walks: multi-omics integration for disease gene prioritization.
    Gentili M; Martini L; Sponziello M; Becchetti L
    Bioinformatics; 2022 Sep; 38(17):4145-4152. PubMed ID: 35792834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA.
    Kim HJ; Yu Z; Lawson A; Zhao H; Chung D
    Bioinformatics; 2018 Jun; 34(12):2139-2141. PubMed ID: 29432514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network-based drug repurposing method via non-negative matrix factorization.
    Sadeghi S; Lu J; Ngom A
    Bioinformatics; 2022 Feb; 38(5):1369-1377. PubMed ID: 34875000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting candidate genes from phenotypes, functions and anatomical site of expression.
    Chen J; Althagafi A; Hoehndorf R
    Bioinformatics; 2021 May; 37(6):853-860. PubMed ID: 33051643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.