These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Network module-based model in the differential expression analysis for RNA-seq. Lei M; Xu J; Huang LC; Wang L; Li J Bioinformatics; 2017 Sep; 33(17):2699-2705. PubMed ID: 28407034 [TBL] [Abstract][Full Text] [Related]
11. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047 [TBL] [Abstract][Full Text] [Related]
12. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data. Johnson KA; Krishnan A Genome Biol; 2022 Jan; 23(1):1. PubMed ID: 34980209 [TBL] [Abstract][Full Text] [Related]
13. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606 [TBL] [Abstract][Full Text] [Related]
14. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data. Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852 [TBL] [Abstract][Full Text] [Related]
15. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data. Bi Y; Davuluri RV BMC Bioinformatics; 2013 Aug; 14():262. PubMed ID: 23981227 [TBL] [Abstract][Full Text] [Related]
16. Classifying next-generation sequencing data using a zero-inflated Poisson model. Zhou Y; Wan X; Zhang B; Tong T Bioinformatics; 2018 Apr; 34(8):1329-1335. PubMed ID: 29186294 [TBL] [Abstract][Full Text] [Related]
17. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Glaus P; Honkela A; Rattray M Bioinformatics; 2012 Jul; 28(13):1721-8. PubMed ID: 22563066 [TBL] [Abstract][Full Text] [Related]
18. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies. Chu C; Fang Z; Hua X; Yang Y; Chen E; Cowley AW; Liang M; Liu P; Lu Y BMC Genomics; 2015 Jun; 16(1):455. PubMed ID: 26070955 [TBL] [Abstract][Full Text] [Related]
19. Integrative analysis of multiple genomic variables using a hierarchical Bayesian model. Schäfer M; Klein HU; Schwender H Bioinformatics; 2017 Oct; 33(20):3220-3227. PubMed ID: 28582573 [TBL] [Abstract][Full Text] [Related]
20. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data. Wang Z; Fang H; Tang NL; Deng M Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]