These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29949981)

  • 1. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian negative binomial regression for differential expression with confounding factors.
    Dadaneh SZ; Zhou M; Qian X
    Bioinformatics; 2018 Oct; 34(19):3349-3356. PubMed ID: 29688254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical probabilistic models for multiple gene/variant associations based on next-generation sequencing data.
    Vavoulis DV; Taylor JC; Schuh A
    Bioinformatics; 2017 Oct; 33(19):3058-3064. PubMed ID: 28575251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.
    Leng N; Li Y; McIntosh BE; Nguyen BK; Duffin B; Tian S; Thomson JA; Dewey CN; Stewart R; Kendziorski C
    Bioinformatics; 2015 Aug; 31(16):2614-22. PubMed ID: 25847007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power analysis and sample size estimation for RNA-Seq differential expression.
    Ching T; Huang S; Garmire LX
    RNA; 2014 Nov; 20(11):1684-96. PubMed ID: 25246651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network module-based model in the differential expression analysis for RNA-seq.
    Lei M; Xu J; Huang LC; Wang L; Li J
    Bioinformatics; 2017 Sep; 33(17):2699-2705. PubMed ID: 28407034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.
    Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR
    BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data.
    Johnson KA; Krishnan A
    Genome Biol; 2022 Jan; 23(1):1. PubMed ID: 34980209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
    Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.
    Bi Y; Davuluri RV
    BMC Bioinformatics; 2013 Aug; 14():262. PubMed ID: 23981227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying next-generation sequencing data using a zero-inflated Poisson model.
    Zhou Y; Wan X; Zhang B; Tong T
    Bioinformatics; 2018 Apr; 34(8):1329-1335. PubMed ID: 29186294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying differentially expressed transcripts from RNA-seq data with biological variation.
    Glaus P; Honkela A; Rattray M
    Bioinformatics; 2012 Jul; 28(13):1721-8. PubMed ID: 22563066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies.
    Chu C; Fang Z; Hua X; Yang Y; Chen E; Cowley AW; Liang M; Liu P; Lu Y
    BMC Genomics; 2015 Jun; 16(1):455. PubMed ID: 26070955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of multiple genomic variables using a hierarchical Bayesian model.
    Schäfer M; Klein HU; Schwender H
    Bioinformatics; 2017 Oct; 33(20):3220-3227. PubMed ID: 28582573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.