BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29949986)

  • 1. Predicting CTCF-mediated chromatin loops using CTCF-MP.
    Zhang R; Wang Y; Yang Y; Zhang Y; Ma J
    Bioinformatics; 2018 Jul; 34(13):i133-i141. PubMed ID: 29949986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 3. CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types.
    Zhang P; Wu Y; Zhou H; Zhou B; Zhang H; Wu H
    Bioinformatics; 2022 Sep; 38(19):4497-4504. PubMed ID: 35997565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCIP: predicting CTCF-mediated chromatin loops with transitivity.
    Wang W; Gao L; Ye Y; Gao Y
    Bioinformatics; 2021 Dec; 37(24):4635-4642. PubMed ID: 34289010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features.
    Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W
    Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loop competition and extrusion model predicts CTCF interaction specificity.
    Xi W; Beer MA
    Nat Commun; 2021 Feb; 12(1):1046. PubMed ID: 33594051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-quadruplexes associated with R-loops promote CTCF binding.
    Wulfridge P; Yan Q; Rell N; Doherty J; Jacobson S; Offley S; Deliard S; Feng K; Phillips-Cremins JE; Gardini A; Sarma K
    Mol Cell; 2023 Sep; 83(17):3064-3079.e5. PubMed ID: 37552993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic screening of CTCF binding partners identifies that BHLHE40 regulates CTCF genome-wide distribution and long-range chromatin interactions.
    Hu G; Dong X; Gong S; Song Y; Hutchins AP; Yao H
    Nucleic Acids Res; 2020 Sep; 48(17):9606-9620. PubMed ID: 32885250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.
    Hansen AS
    Nucleus; 2020 Dec; 11(1):132-148. PubMed ID: 32631111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning.
    Oomen ME; Hansen AS; Liu Y; Darzacq X; Dekker J
    Genome Res; 2019 Feb; 29(2):236-249. PubMed ID: 30655336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of CTCF loop anchor based on machine learning.
    Zhang X; Zhu W; Sun H; Ding Y; Liu L
    Front Genet; 2023; 14():1181956. PubMed ID: 37077544
    [No Abstract]   [Full Text] [Related]  

  • 15. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline.
    Kaiser VB; Semple CA
    Genome Biol; 2018 Jul; 19(1):101. PubMed ID: 30060743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries.
    Nanni L; Ceri S; Logie C
    Genome Biol; 2020 Aug; 21(1):197. PubMed ID: 32782014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops.
    Guo Y; Perez AA; Hazelett DJ; Coetzee GA; Rhie SK; Farnham PJ
    Genome Biol; 2018 Oct; 19(1):160. PubMed ID: 30296942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct properties and functions of CTCF revealed by a rapidly inducible degron system.
    Luan J; Xiang G; Gómez-García PA; Tome JM; Zhang Z; Vermunt MW; Zhang H; Huang A; Keller CA; Giardine BM; Zhang Y; Lan Y; Lis JT; Lakadamyali M; Hardison RC; Blobel GA
    Cell Rep; 2021 Feb; 34(8):108783. PubMed ID: 33626344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CTCF and R-loops are boundaries of cohesin-mediated DNA looping.
    Zhang H; Shi Z; Banigan EJ; Kim Y; Yu H; Bai XC; Finkelstein IJ
    Mol Cell; 2023 Aug; 83(16):2856-2871.e8. PubMed ID: 37536339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.