These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29949991)

  • 1. Finding associated variants in genome-wide association studies on multiple traits.
    Gai L; Eskin E
    Bioinformatics; 2018 Jul; 34(13):i467-i474. PubMed ID: 29949991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unifying framework for joint trait analysis under a non-infinitesimal model.
    Johnson R; Shi H; Pasaniuc B; Sankararaman S
    Bioinformatics; 2018 Jul; 34(13):i195-i201. PubMed ID: 29949958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes.
    Duong D; Gai L; Snir S; Kang EY; Han B; Sul JH; Eskin E
    Bioinformatics; 2017 Jul; 33(14):i67-i74. PubMed ID: 28881962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the joint local false discovery rate is more powerful than meta-analysis methods in joint analysis of summary statistics from multiple genome-wide association studies.
    Jiang W; Yu W
    Bioinformatics; 2017 Feb; 33(4):500-507. PubMed ID: 28011772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data.
    Guo B; Wu B
    Bioinformatics; 2019 Apr; 35(8):1366-1372. PubMed ID: 30239606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PolarMorphism enables discovery of shared genetic variants across multiple traits from GWAS summary statistics.
    von Berg J; Ten Dam M; van der Laan SW; de Ridder J
    Bioinformatics; 2022 Jun; 38(Suppl 1):i212-i219. PubMed ID: 35758773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VIMCO: variational inference for multiple correlated outcomes in genome-wide association studies.
    Shi X; Jiao Y; Yang Y; Cheng CY; Yang C; Lin X; Liu J
    Bioinformatics; 2019 Oct; 35(19):3693-3700. PubMed ID: 30851102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and INdirect effects analysis of Genetic lOci (DINGO): A software package to increase the power of locus discovery in GWAS meta-analyses of perinatal phenotypes and traits influenced by indirect genetic effects.
    Hwang LD; Cuellar-Partida G; Yengo L; Zeng J; Beaumont RN; Freathy RM; Moen GH; Warrington NM; Evans DM
    medRxiv; 2023 Aug; ():. PubMed ID: 37693475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for meta-analysis of multiple traits using GWAS summary statistics.
    Ray D; Boehnke M
    Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene- and pathway-based association tests for multiple traits with GWAS summary statistics.
    Kwak IY; Pan W
    Bioinformatics; 2017 Jan; 33(1):64-71. PubMed ID: 27592708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants.
    Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA
    Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LSMM: a statistical approach to integrating functional annotations with genome-wide association studies.
    Ming J; Dai M; Cai M; Wan X; Liu J; Yang C
    Bioinformatics; 2018 Aug; 34(16):2788-2796. PubMed ID: 29608640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies.
    Yang Y; Shi X; Jiao Y; Huang J; Chen M; Zhou X; Sun L; Lin X; Yang C; Liu J
    Bioinformatics; 2020 Apr; 36(7):2009-2016. PubMed ID: 31755899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GWAlpha: genome-wide estimation of additive effects (alpha) based on trait quantile distribution from pool-sequencing experiments.
    Fournier-Level A; Robin C; Balding DJ
    Bioinformatics; 2017 Apr; 33(8):1246-1247. PubMed ID: 28003266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PALM: a powerful and adaptive latent model for prioritizing risk variants with functional annotations.
    Yu X; Xiao J; Cai M; Jiao Y; Wan X; Liu J; Yang C
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining multi-population datasets for joint genome-wide association and meta-analyses: The case of bovine milk fat composition traits.
    Gebreyesus G; Buitenhuis AJ; Poulsen NA; Visker MHPW; Zhang Q; van Valenberg HJF; Sun D; Bovenhuis H
    J Dairy Sci; 2019 Dec; 102(12):11124-11141. PubMed ID: 31563305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariate-modulated local false discovery rate for genome-wide association studies.
    Zablocki RW; Schork AJ; Levine RA; Andreassen OA; Dale AM; Thompson WK
    Bioinformatics; 2014 Aug; 30(15):2098-104. PubMed ID: 24711653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.