BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29949994)

  • 1. A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity.
    Petralia F; Wang L; Peng J; Yan A; Zhu J; Wang P
    Bioinformatics; 2018 Jul; 34(13):i528-i536. PubMed ID: 29949994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint reconstruction of multiple gene networks by simultaneously capturing inter-tumor and intra-tumor heterogeneity.
    Tu JJ; Ou-Yang L; Yan H; Zhang XF; Qin H
    Bioinformatics; 2020 May; 36(9):2755-2762. PubMed ID: 31971577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating prior information into differential network analysis using non-paranormal graphical models.
    Zhang XF; Ou-Yang L; Yan H
    Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
    Specht AT; Li J
    Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions.
    Deng W; Zhang K; Liu S; Zhao PX; Xu S; Wei H
    Bioinformatics; 2018 Oct; 34(20):3470-3478. PubMed ID: 29718177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoform-level gene expression patterns in single-cell RNA-sequencing data.
    Vu TN; Wills QF; Kalari KR; Niu N; Wang L; Pawitan Y; Rantalainen M
    Bioinformatics; 2018 Jul; 34(14):2392-2400. PubMed ID: 29490015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splice Expression Variation Analysis (SEVA) for inter-tumor heterogeneity of gene isoform usage in cancer.
    Afsari B; Guo T; Considine M; Florea L; Kagohara LT; Stein-O'Brien GL; Kelley D; Flam E; Zambo KD; Ha PK; Geman D; Ochs MF; Califano JA; Gaykalova DA; Favorov AV; Fertig EJ
    Bioinformatics; 2018 Jun; 34(11):1859-1867. PubMed ID: 29342249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.
    Serra A; Coretto P; Fratello M; Tagliaferri R; Stegle O
    Bioinformatics; 2018 Feb; 34(4):625-634. PubMed ID: 29040390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.
    Choi J; Park S; Yoon Y; Ahn J
    Bioinformatics; 2017 Nov; 33(22):3619-3626. PubMed ID: 28961949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.
    Gov E; Arga KY
    Sci Rep; 2017 Jul; 7(1):4996. PubMed ID: 28694494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SMARTS: reconstructing disease response networks from multiple individuals using time series gene expression data.
    Wise A; Bar-Joseph Z
    Bioinformatics; 2015 Apr; 31(8):1250-7. PubMed ID: 25480376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results.
    Rahman M; Jackson LK; Johnson WE; Li DY; Bild AH; Piccolo SR
    Bioinformatics; 2015 Nov; 31(22):3666-72. PubMed ID: 26209429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular profiling of mucinous epithelial ovarian cancer by weighted gene co-expression network analysis.
    Zhang GH; Chen MM; Kai JY; Ma Q; Zhong AL; Xie SH; Zheng H; Wang YC; Tong Y; Lu RQ; Guo L
    Gene; 2019 Aug; 709():56-64. PubMed ID: 31108164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.