These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 29950096)
21. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability. Tatara S; Kuzumoto Y; Kitamura M J Nanosci Nanotechnol; 2016 Apr; 16(4):3295-300. PubMed ID: 27451620 [TBL] [Abstract][Full Text] [Related]
22. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage. Zhang B; Cao HJ; Lin HM; Deng SG; Wu H Food Chem; 2019 Apr; 278():482-490. PubMed ID: 30583401 [TBL] [Abstract][Full Text] [Related]
23. Trehalose-Functionalized Gold Nanoparticle for Inhibiting Intracellular Protein Aggregation. Mandal S; Debnath K; Jana NR; Jana NR Langmuir; 2017 Dec; 33(49):13996-14003. PubMed ID: 29125765 [TBL] [Abstract][Full Text] [Related]
24. Biopreservation of Myoglobin in Crowded Environment: A Comparison between Gelatin and Trehalose Matrixes. Semeraro EF; Giuffrida S; Cottone G; Cupane A J Phys Chem B; 2017 Sep; 121(37):8731-8741. PubMed ID: 28829129 [TBL] [Abstract][Full Text] [Related]
25. Molecular dynamics study on the stabilization of dehydrated lipid bilayers with glucose and trehalose. Leekumjorn S; Sum AK J Phys Chem B; 2008 Aug; 112(34):10732-40. PubMed ID: 18680361 [TBL] [Abstract][Full Text] [Related]
26. Effect of gold nanoparticle conjugation on the activity and stability of functional proteins. Bailes J; Gazi S; Ivanova R; Soloviev M Methods Mol Biol; 2012; 906():89-99. PubMed ID: 22791426 [TBL] [Abstract][Full Text] [Related]
27. Kinetics of nanobubble generation around overheated nanoparticles. Lombard J; Biben T; Merabia S Phys Rev Lett; 2014 Mar; 112(10):105701. PubMed ID: 24679307 [TBL] [Abstract][Full Text] [Related]
28. Sharpening the thermal release of DNA from nanoparticles: towards a sequential release strategy. Díaz JA; Gibbs-Davis JM Small; 2013 Sep; 9(17):2862-71. PubMed ID: 23341260 [TBL] [Abstract][Full Text] [Related]
29. Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Zhou J; Chen JK; Zhang Y Comput Biol Med; 2009 Mar; 39(3):286-93. PubMed ID: 19217088 [TBL] [Abstract][Full Text] [Related]
30. Recrystallization and Water Absorption Properties of Vitrified Trehalose Near Room Temperature. Shirakashi R; Takano K Pharm Res; 2018 May; 35(7):139. PubMed ID: 29748860 [TBL] [Abstract][Full Text] [Related]
31. Breakdown of Fourier's law in nanotube thermal conductors. Chang CW; Okawa D; Garcia H; Majumdar A; Zettl A Phys Rev Lett; 2008 Aug; 101(7):075903. PubMed ID: 18764555 [TBL] [Abstract][Full Text] [Related]
32. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations. Dashnau JL; Zelent B; Vanderkooi JM Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863 [TBL] [Abstract][Full Text] [Related]
33. The alpha,alpha-(1-->1) linkage of trehalose is key to anhydrobiotic preservation. Albertorio F; Chapa VA; Chen X; Diaz AJ; Cremer PS J Am Chem Soc; 2007 Aug; 129(34):10567-74. PubMed ID: 17676844 [TBL] [Abstract][Full Text] [Related]
34. Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies. Liu X; Chen HJ; Chen X; Parini C; Wen D Nanoscale; 2012 Jul; 4(13):3945-53. PubMed ID: 22622412 [TBL] [Abstract][Full Text] [Related]
35. An investigation into the thermal behaviour of a model drug mixture with amorphous trehalose. Horvat M; Mestrović E; Danilovski A; Craig DQ Int J Pharm; 2005 Apr; 294(1-2):1-10. PubMed ID: 15814226 [TBL] [Abstract][Full Text] [Related]
36. Hydration behaviour of some mono-, di-, and tri-saccharides in aqueous sodium gluconate solutions at (288.15, 298.15, 308.15 and 318.15)K: volumetric and rheological approach. Banipal PK; Singh V; Aggarwal N; Banipal TS Food Chem; 2015 Feb; 168():142-50. PubMed ID: 25172693 [TBL] [Abstract][Full Text] [Related]
37. Role of the range of the interactions in thermal conduction. Olivares C; Anteneodo C Phys Rev E; 2016 Oct; 94(4-1):042117. PubMed ID: 27841624 [TBL] [Abstract][Full Text] [Related]
38. Revealing the trehalose mediated inhibition of protein aggregation through lysozyme-silver nanoparticle interaction. Siddhanta S; Barman I; Narayana C Soft Matter; 2015 Oct; 11(37):7241-9. PubMed ID: 26271458 [TBL] [Abstract][Full Text] [Related]
39. Gold nanoparticle-modulated conductivity in gold peapodded silica nanowires. Wang SB; Hu MS; Chang SJ; Chong CW; Han HC; Huang BR; Chen LC; Chen KH Nanoscale; 2012 Jun; 4(12):3660-4. PubMed ID: 22614883 [TBL] [Abstract][Full Text] [Related]
40. Elegant chemistry to directly anchor intact saccharides on solid surfaces used for the fabrication of bioactivity-conserved saccharide microarrays. Liang K; Chen Y Bioconjug Chem; 2012 Jun; 23(6):1300-8. PubMed ID: 22559744 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]