These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 29950913)
1. Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials. Rombach I; Jenkinson C; Gray AM; Murray DW; Rivero-Arias O Patient Relat Outcome Meas; 2018; 9():197-209. PubMed ID: 29950913 [TBL] [Abstract][Full Text] [Related]
2. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level. Rombach I; Gray AM; Jenkinson C; Murray DW; Rivero-Arias O BMC Med Res Methodol; 2018 Aug; 18(1):87. PubMed ID: 30153796 [TBL] [Abstract][Full Text] [Related]
3. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting. Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611 [TBL] [Abstract][Full Text] [Related]
4. On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint. Middleton M; Nguyen C; Carlin JB; Moreno-Betancur M; Lee KJ BMC Med Res Methodol; 2023 Dec; 23(1):287. PubMed ID: 38062377 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related]
6. Combining multiple imputation and inverse-probability weighting. Seaman SR; White IR; Copas AJ; Li L Biometrics; 2012 Mar; 68(1):129-37. PubMed ID: 22050039 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of approaches for multiple imputation of three-level data. Wijesuriya R; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2020 Aug; 20(1):207. PubMed ID: 32787781 [TBL] [Abstract][Full Text] [Related]
8. Addressing missing data in the estimation of time-varying treatments in comparative effectiveness research. Segura-Buisan J; Leyrat C; Gomes M Stat Med; 2023 Nov; 42(27):5025-5038. PubMed ID: 37726937 [TBL] [Abstract][Full Text] [Related]
9. Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata. De Silva AP; De Livera AM; Lee KJ; Moreno-Betancur M; Simpson JA Biom J; 2021 Feb; 63(2):354-371. PubMed ID: 33103307 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of predictive model performance of an existing model in the presence of missing data. Li P; Taylor JMG; Spratt DE; Karnes RJ; Schipper MJ Stat Med; 2021 Jul; 40(15):3477-3498. PubMed ID: 33843085 [TBL] [Abstract][Full Text] [Related]
11. Accounting for nonmonotone missing data using inverse probability weighting. Ross RK; Cole SR; Edwards JK; Westreich D; Daniels JL; Stringer JSA Stat Med; 2023 Oct; 42(23):4282-4298. PubMed ID: 37525436 [TBL] [Abstract][Full Text] [Related]
12. A comparison of multiple imputation methods for missing data in longitudinal studies. Huque MH; Carlin JB; Simpson JA; Lee KJ BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455 [TBL] [Abstract][Full Text] [Related]
13. A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis. Jahangiri M; Kazemnejad A; Goldfeld KS; Daneshpour MS; Mostafaei S; Khalili D; Moghadas MR; Akbarzadeh M BMC Med Res Methodol; 2023 Jul; 23(1):161. PubMed ID: 37415114 [TBL] [Abstract][Full Text] [Related]
14. On Inverse Probability Weighting for Nonmonotone Missing at Random Data. Sun B; Tchetgen Tchetgen EJ J Am Stat Assoc; 2018; 113(521):369-379. PubMed ID: 30034062 [TBL] [Abstract][Full Text] [Related]
15. Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random. Doidge JC Stat Methods Med Res; 2018 Feb; 27(2):352-363. PubMed ID: 26984909 [TBL] [Abstract][Full Text] [Related]
16. Attrition Bias Related to Missing Outcome Data: A Longitudinal Simulation Study. Lewin A; Brondeel R; Benmarhnia T; Thomas F; Chaix B Epidemiology; 2018 Jan; 29(1):87-95. PubMed ID: 28926372 [TBL] [Abstract][Full Text] [Related]
17. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
18. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model. Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921 [TBL] [Abstract][Full Text] [Related]
19. Comparisons of statistical methods for handling attrition in a follow-up visit with complex survey sampling. Cai J; Zeng D; Li H; Butera NM; Baldoni PL; Maitra P; Dong L Stat Med; 2023 May; 42(11):1641-1668. PubMed ID: 37183765 [TBL] [Abstract][Full Text] [Related]
20. The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? Ben ÂJ; van Dongen JM; Alili ME; Heymans MW; Twisk JWR; MacNeil-Vroomen JL; de Wit M; van Dijk SEM; Oosterhuis T; Bosmans JE Eur J Health Econ; 2023 Aug; 24(6):951-965. PubMed ID: 36161553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]