These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29951815)

  • 1. Repeat Expansion Disease Models.
    Ueyama M; Nagai Y
    Adv Exp Med Biol; 2018; 1076():63-78. PubMed ID: 29951815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries.
    Castro AF; Loureiro JR; Bessa J; Silveira I
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA toxicity and foci formation in microsatellite expansion diseases.
    Zhang N; Ashizawa T
    Curr Opin Genet Dev; 2017 Jun; 44():17-29. PubMed ID: 28208060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating noncoding nucleotide repeat expansions in amyotrophic lateral sclerosis.
    Figley MD; Thomas A; Gitler AD
    Neurobiol Aging; 2014 Apr; 35(4):936.e1-4. PubMed ID: 24269018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of RNA-induced toxicity in CAG repeat disorders.
    Nalavade R; Griesche N; Ryan DP; Hildebrand S; Krauss S
    Cell Death Dis; 2013 Aug; 4(8):e752. PubMed ID: 23907466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-mediated neuromuscular disorders.
    Ranum LP; Cooper TA
    Annu Rev Neurosci; 2006; 29():259-77. PubMed ID: 16776586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage.
    Jackson SM; Whitworth AJ; Greene JC; Libby RT; Baccam SL; Pallanck LJ; La Spada AR
    Gene; 2005 Feb; 347(1):35-41. PubMed ID: 15715978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs.
    Anderson R; Das MR; Chang Y; Farenhem K; Schmitz CO; Jain A
    Mol Cell; 2024 Feb; 84(4):702-714.e10. PubMed ID: 38295802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neurodegenerative polyglutamine expansion diseases: physiopathology and therapeutic strategies].
    Ravache M; Abou-Sleymane G; Trottier Y
    Pathol Biol (Paris); 2010 Oct; 58(5):357-66. PubMed ID: 20299163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila.
    Shieh SY; Bonini NM
    Hum Mol Genet; 2011 Dec; 20(24):4810-21. PubMed ID: 21933837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing a peptidylic inhibitor-based therapeutic approach that simultaneously suppresses polyglutamine RNA- and protein-mediated toxicities in patient cells and Drosophila.
    Zhang Q; Tsoi H; Peng S; Li PP; Lau KF; Rudnicki DD; Ngo JC; Chan HY
    Dis Model Mech; 2016 Mar; 9(3):321-34. PubMed ID: 26839389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pathogenic agent in Drosophila models of 'polyglutamine' diseases.
    McLeod CJ; O'Keefe LV; Richards RI
    Hum Mol Genet; 2005 Apr; 14(8):1041-8. PubMed ID: 15757976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families.
    Brusco A; Gellera C; Cagnoli C; Saluto A; Castucci A; Michielotto C; Fetoni V; Mariotti C; Migone N; Di Donato S; Taroni F
    Arch Neurol; 2004 May; 61(5):727-33. PubMed ID: 15148151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models and mechanisms of repeat expansion disorders: a worm's eye view.
    Rudich P; Lamitina T
    J Genet; 2018 Jul; 97(3):665-677. PubMed ID: 30027902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and analysis of repeat RNA toxicity in Drosophila.
    Samaraweera SE; O'Keefe LV; van Eyk CL; Lawlor KT; Humphreys DT; Suter CM; Richards RI
    Methods Mol Biol; 2013; 1017():173-92. PubMed ID: 23719916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies.
    Bauer PO; Nukina N
    J Neurochem; 2009 Sep; 110(6):1737-65. PubMed ID: 19650870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases.
    Lawlor KT; O'Keefe LV; Samaraweera SE; van Eyk CL; McLeod CJ; Maloney CA; Dang TH; Suter CM; Richards RI
    Hum Mol Genet; 2011 Oct; 20(19):3757-68. PubMed ID: 21724553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA FISH for detecting expanded repeats in human diseases.
    Urbanek MO; Krzyzosiak WJ
    Methods; 2016 Apr; 98():115-123. PubMed ID: 26615955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DnaJ-1 and karyopherin α3 suppress degeneration in a new Drosophila model of Spinocerebellar Ataxia Type 6.
    Tsou WL; Hosking RR; Burr AA; Sutton JR; Ouyang M; Du X; Gomez CM; Todi SV
    Hum Mol Genet; 2015 Aug; 24(15):4385-96. PubMed ID: 25954029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular basis of spinocerebellar ataxias subtype caused by nucleotide repeat expansion in noncoding region].
    Wang JL; Tang BS
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Jun; 25(3):293-6. PubMed ID: 18543219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.