These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 29951916)
1. Increased cortical involvement and synchronization during CAP A1 slow waves. Ujma PP; Halász P; Simor P; Fabó D; Ferri R Brain Struct Funct; 2018 Nov; 223(8):3531-3542. PubMed ID: 29951916 [TBL] [Abstract][Full Text] [Related]
2. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974 [TBL] [Abstract][Full Text] [Related]
3. Epileptic interictal discharges are more frequent during NREM slow wave downstates. Ujma PP; Halász P; Kelemen A; Fabó D; Erőss L Neurosci Lett; 2017 Sep; 658():37-42. PubMed ID: 28811195 [TBL] [Abstract][Full Text] [Related]
4. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Ferri R; Rundo F; Bruni O; Terzano MG; Stam CJ Clin Neurophysiol; 2007 Feb; 118(2):449-56. PubMed ID: 17174148 [TBL] [Abstract][Full Text] [Related]
5. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Esser SK; Hill SL; Tononi G Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972 [TBL] [Abstract][Full Text] [Related]
7. The slow-wave components of the cyclic alternating pattern (CAP) have a role in sleep-related learning processes. Ferri R; Huber R; Aricò D; Drago V; Rundo F; Ghilardi MF; Massimini M; Tononi G Neurosci Lett; 2008 Feb; 432(3):228-31. PubMed ID: 18248892 [TBL] [Abstract][Full Text] [Related]
8. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves. Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651 [TBL] [Abstract][Full Text] [Related]
10. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters. Vyazovskiy VV; Palchykova S; Achermann P; Tobler I; Deboer T Cereb Cortex; 2017 Feb; 27(2):950-961. PubMed ID: 28168294 [TBL] [Abstract][Full Text] [Related]
11. Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Ferri R; Bruni O; Miano S; Terzano MG Sleep Med; 2005 Jan; 6(1):29-36. PubMed ID: 15680292 [TBL] [Abstract][Full Text] [Related]
12. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Vyazovskiy VV; Riedner BA; Cirelli C; Tononi G Sleep; 2007 Dec; 30(12):1631-42. PubMed ID: 18246973 [TBL] [Abstract][Full Text] [Related]
13. Integrity of Corpus Callosum Is Essential for theCross-Hemispheric Propagation of Sleep Slow Waves:A High-Density EEG Study in Split-Brain Patients. Avvenuti G; Handjaras G; Betta M; Cataldi J; Imperatori LS; Lattanzi S; Riedner BA; Pietrini P; Ricciardi E; Tononi G; Siclari F; Polonara G; Fabri M; Silvestrini M; Bellesi M; Bernardi G J Neurosci; 2020 Jul; 40(29):5589-5603. PubMed ID: 32541070 [TBL] [Abstract][Full Text] [Related]
14. All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects. Ferri R; Bruni O; Miano S; Plazzi G; Terzano MG Clin Neurophysiol; 2005 Oct; 116(10):2429-40. PubMed ID: 16112901 [TBL] [Abstract][Full Text] [Related]
15. How we fall asleep: regional and temporal differences in electroencephalographic synchronization at sleep onset. Marzano C; Moroni F; Gorgoni M; Nobili L; Ferrara M; De Gennaro L Sleep Med; 2013 Nov; 14(11):1112-22. PubMed ID: 24051119 [TBL] [Abstract][Full Text] [Related]
16. Origin, synchronization, and propagation of sleep slow waves in children. Castelnovo A; Lividini A; Riedner BA; Avvenuti G; Jones SG; Miano S; Tononi G; Manconi M; Bernardi G Neuroimage; 2023 Jul; 274():120133. PubMed ID: 37094626 [TBL] [Abstract][Full Text] [Related]
17. Brain white matter damage and its association with neuronal synchrony during sleep. Sanchez E; El-Khatib H; Arbour C; Bedetti C; Blais H; Marcotte K; Baril AA; Descoteaux M; Gilbert D; Carrier J; Gosselin N Brain; 2019 Mar; 142(3):674-687. PubMed ID: 30698667 [TBL] [Abstract][Full Text] [Related]
18. Individual slow-wave morphology is a marker of aging. Ujma PP; Simor P; Steiger A; Dresler M; Bódizs R Neurobiol Aging; 2019 Aug; 80():71-82. PubMed ID: 31103634 [TBL] [Abstract][Full Text] [Related]
19. Thalamic activity during scalp slow waves in humans. Ujma PP; Szalárdy O; Fabó D; Erőss L; Bódizs R Neuroimage; 2022 Aug; 257():119325. PubMed ID: 35605767 [TBL] [Abstract][Full Text] [Related]
20. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Betta M; Handjaras G; Leo A; Federici A; Farinelli V; Ricciardi E; Siclari F; Meletti S; Ballotta D; Benuzzi F; Bernardi G Neuroimage; 2021 Aug; 236():118117. PubMed ID: 33940148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]