These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Coherent transport in Y-junction graphene waveguide. Mosallanejad V; Chiu KL; Guo GP J Phys Condens Matter; 2018 Nov; 30(44):445301. PubMed ID: 30207300 [TBL] [Abstract][Full Text] [Related]
3. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice. Wang XM; Lu SS J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530 [TBL] [Abstract][Full Text] [Related]
4. The computational design of junctions between carbon nanotubes and graphene nanoribbons. Li YF; Li BR; Zhang HL Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869 [TBL] [Abstract][Full Text] [Related]
5. Analysis of characteristics of bent rib waveguides. Dai D; He S J Opt Soc Am A Opt Image Sci Vis; 2004 Jan; 21(1):113-21. PubMed ID: 14725403 [TBL] [Abstract][Full Text] [Related]
6. On the thermoelectric transport properties of graphyne by the first-principles method. Wang XM; Mo DC; Lu SS J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497 [TBL] [Abstract][Full Text] [Related]
7. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Shin JS; Kim JT Nanotechnology; 2015 Sep; 26(36):365201. PubMed ID: 26293975 [TBL] [Abstract][Full Text] [Related]
8. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Phatak A; Cheng Z; Qin C; Goda K Opt Lett; 2016 Jun; 41(11):2501-4. PubMed ID: 27244399 [TBL] [Abstract][Full Text] [Related]
9. Strain-induced tunable negative differential resistance in triangle graphene spirals. Tan J; Zhang X; Liu W; He X; Zhao M Nanotechnology; 2018 May; 29(20):205202. PubMed ID: 29473828 [TBL] [Abstract][Full Text] [Related]
10. High Q-factor microring resonator wrapped by the curved waveguide. Cai DP; Lu JH; Chen CC; Lee CC; Lin CE; Yen TJ Sci Rep; 2015 May; 5():10078. PubMed ID: 25993265 [TBL] [Abstract][Full Text] [Related]
11. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges. Bilić A; Sanvito S J Chem Phys; 2013 Jan; 138(1):014704. PubMed ID: 23298054 [TBL] [Abstract][Full Text] [Related]
12. Topological edge modes in non-Hermitian plasmonic waveguide arrays. Ke S; Wang B; Long H; Wang K; Lu P Opt Express; 2017 May; 25(10):11132-11143. PubMed ID: 28788795 [TBL] [Abstract][Full Text] [Related]
13. Spin-filter and Fano antiresonant effect in conductance through a zigzaglike polymer device: nonequilibrium Green's function approach. Fu HH; Yao KL J Chem Phys; 2011 Feb; 134(5):054903. PubMed ID: 21303156 [TBL] [Abstract][Full Text] [Related]
14. Transport properties of graphene nanoribbons with side-attached organic molecules. Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698 [TBL] [Abstract][Full Text] [Related]
15. Novel dispersive and focusing device configuration based on curved waveguide grating (CWG). Hao Y; Wu Y; Yang J; Jiang X; Wang M Opt Express; 2006 Sep; 14(19):8630-7. PubMed ID: 19529243 [TBL] [Abstract][Full Text] [Related]
16. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon. Kim Y; Kwon MS Nanoscale; 2017 Nov; 9(44):17429-17438. PubMed ID: 29104985 [TBL] [Abstract][Full Text] [Related]
17. Characterization of bending losses for curved plasmonic nanowire waveguides. Dikken DJ; Spasenović M; Verhagen E; van Oosten D; Kuipers LK Opt Express; 2010 Jul; 18(15):16112-9. PubMed ID: 20720996 [TBL] [Abstract][Full Text] [Related]