These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29952550)

  • 1. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Anal Chem; 2018 Aug; 90(15):9434-9440. PubMed ID: 29952550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems.
    Taraji M; Haddad PR; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Jul; 1507():53-62. PubMed ID: 28587779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds.
    Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R
    Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model.
    Wen Y; Talebi M; Amos RIJ; Szucs R; Dolan JW; Pohl CA; Haddad PR
    J Chromatogr A; 2018 Mar; 1541():1-11. PubMed ID: 29454529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio.
    Tyteca E; Talebi M; Amos R; Park SH; Taraji M; Wen Y; Szucs R; Pohl CA; Dolan JW; Haddad PR
    J Chromatogr A; 2017 Feb; 1486():50-58. PubMed ID: 27720174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics.
    Samaraweera MA; Hall LM; Hill DW; Grant DF
    Anal Chem; 2018 Nov; 90(21):12752-12760. PubMed ID: 30350614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography.
    Talebi M; Schuster G; Shellie RA; Szucs R; Haddad PR
    J Chromatogr A; 2015 Dec; 1424():69-76. PubMed ID: 26592563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification.
    Narduzzi L; Stanstrup J; Mattivi F; Franceschi P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2145-2157. PubMed ID: 30352003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Ecom₅₀ and retention index models for nontargeted metabolomics: identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry.
    Hall LM; Hall LH; Kertesz TM; Hill DW; Sharp TR; Oblak EZ; Dong YW; Wishart DS; Chen MH; Grant DF
    J Chem Inf Model; 2012 May; 52(5):1222-37. PubMed ID: 22489687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention prediction using quantitative structure-retention relationships combined with the hydrophobic subtraction model in reversed-phase liquid chromatography.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Electrophoresis; 2019 Sep; 40(18-19):2415-2419. PubMed ID: 30953374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition.
    Bruderer T; Varesio E; Hopfgartner G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():3-10. PubMed ID: 28780068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-retention relationships for pyridinium-based ionic liquids used as gas chromatographic stationary phases: convenient software and assessment of reliability of the results.
    Sholokhova AY; Matyushin DD; Shashkov MV
    J Chromatogr A; 2024 Aug; 1730():465144. PubMed ID: 38996513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms.
    Žuvela P; Liu JJ; Macur K; Bączek T
    Anal Chem; 2015 Oct; 87(19):9876-83. PubMed ID: 26346190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of UPLC behaviour of acylcarnitines by quantitative structure-retention relationships.
    D'Archivio AA; Maggi MA; Ruggieri F
    J Pharm Biomed Anal; 2014 Aug; 96():224-30. PubMed ID: 24780923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.