BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29952680)

  • 1. Antigenotoxic potential of boron nitride nanotubes.
    Demir E; Marcos R
    Nanotoxicology; 2018 Oct; 12(8):868-884. PubMed ID: 29952680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.
    Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R
    Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper oxide nanoparticles and copper sulphate act as antigenotoxic agents in drosophila melanogaster.
    Alaraby M; Hernández A; Marcos R
    Environ Mol Mutagen; 2017 Jan; 58(1):46-55. PubMed ID: 28079919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of genotoxic and antigenotoxic effects of boron by the somatic mutation and recombination test (SMART) on Drosophila.
    Sarıkaya R; Erciyas K; Kara MI; Sezer U; Erciyas AF; Ay S
    Drug Chem Toxicol; 2016 Oct; 39(4):400-6. PubMed ID: 26757614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of carbohydrate modified boron nitride nanotubes with living cells.
    Emanet M; Şen Ö; Çobandede Z; Çulha M
    Colloids Surf B Biointerfaces; 2015 Oct; 134():440-6. PubMed ID: 26222410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron nitride nanotubes for gene silencing.
    Şen Ö; Çobandede Z; Emanet M; Bayrak ÖF; Çulha M
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2391-2397. PubMed ID: 28571947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages.
    Rocca A; Marino A; Del Turco S; Cappello V; Parlanti P; Pellegrino M; Golberg D; Mattoli V; Ciofani G
    Biochim Biophys Acta; 2016 Apr; 1860(4):775-84. PubMed ID: 26825772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of boron nitride nanotubes and hexagonal boron nitrides as nanocarriers for cancer drugs.
    Emanet M; Şen Ö; Çulha M
    Nanomedicine (Lond); 2017 Apr; 12(7):797-810. PubMed ID: 28322118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells.
    Ciofani G; Del Turco S; Rocca A; de Vito G; Cappello V; Yamaguchi M; Li X; Mazzolai B; Basta G; Gemmi M; Piazza V; Golberg D; Mattoli V
    Nanomedicine (Lond); 2014 May; 9(6):773-88. PubMed ID: 24981649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells.
    Chen X; Wu P; Rousseas M; Okawa D; Gartner Z; Zettl A; Bertozzi CR
    J Am Chem Soc; 2009 Jan; 131(3):890-1. PubMed ID: 19119844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted delivery of Auristatin PE to Hep G2 cells using folate - conjugated boron nitride nanotubes.
    Li W; Xie X; Wu T; Yang H; Peng Y; Luo L; Chen Y
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110509. PubMed ID: 32228939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple approach to covalent functionalization of boron nitride nanotubes.
    Ciofani G; Genchi GG; Liakos I; Athanassiou A; Dinucci D; Chiellini F; Mattoli V
    J Colloid Interface Sci; 2012 May; 374(1):308-14. PubMed ID: 22341699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells.
    Li W; Xie X; Wu T; Lin H; Luo L; Yang H; Li J; Xin Y; Lin X; Chen Y
    Colloids Surf B Biointerfaces; 2019 Sep; 181():305-314. PubMed ID: 31154141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation.
    Danti S; Ciofani G; Moscato S; D'Alessandro D; Ciabatti E; Nesti C; Brescia R; Bertoni G; Pietrabissa A; Lisanti M; Petrini M; Mattoli V; Berrettini S
    Nanotechnology; 2013 Nov; 24(46):465102. PubMed ID: 24150892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications.
    Lee CH; Bhandari S; Tiwari B; Yapici N; Zhang D; Yap YK
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27428947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians.
    Salvetti A; Rossi L; Iacopetti P; Li X; Nitti S; Pellegrino T; Mattoli V; Golberg D; Ciofani G
    Nanomedicine (Lond); 2015 Jul; 10(12):1911-22. PubMed ID: 25835434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies.
    Ferreira TH; Soares DC; Moreira LM; da Silva PR; dos Santos RG; de Sousa EM
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4616-23. PubMed ID: 24094168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot in vivo toxicological investigation of boron nitride nanotubes.
    Ciofani G; Danti S; Genchi GG; D'Alessandro D; Pellequer JL; Odorico M; Mattoli V; Giorgi M
    Int J Nanomedicine; 2012; 7():19-24. PubMed ID: 22275819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model.
    Alaraby M; Hernández A; Marcos R
    Nanotoxicology; 2016 Aug; 10(6):749-60. PubMed ID: 26634780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells.
    Li X; Wang X; Jiang X; Yamaguchi M; Ito A; Bando Y; Golberg D
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):323-9. PubMed ID: 25766516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.