These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 29952680)
1. Antigenotoxic potential of boron nitride nanotubes. Demir E; Marcos R Nanotoxicology; 2018 Oct; 12(8):868-884. PubMed ID: 29952680 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738 [TBL] [Abstract][Full Text] [Related]
3. Copper oxide nanoparticles and copper sulphate act as antigenotoxic agents in drosophila melanogaster. Alaraby M; Hernández A; Marcos R Environ Mol Mutagen; 2017 Jan; 58(1):46-55. PubMed ID: 28079919 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of genotoxic and antigenotoxic effects of boron by the somatic mutation and recombination test (SMART) on Drosophila. Sarıkaya R; Erciyas K; Kara MI; Sezer U; Erciyas AF; Ay S Drug Chem Toxicol; 2016 Oct; 39(4):400-6. PubMed ID: 26757614 [TBL] [Abstract][Full Text] [Related]
5. Interaction of carbohydrate modified boron nitride nanotubes with living cells. Emanet M; Şen Ö; Çobandede Z; Çulha M Colloids Surf B Biointerfaces; 2015 Oct; 134():440-6. PubMed ID: 26222410 [TBL] [Abstract][Full Text] [Related]
6. Boron nitride nanotubes for gene silencing. Şen Ö; Çobandede Z; Emanet M; Bayrak ÖF; Çulha M Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2391-2397. PubMed ID: 28571947 [TBL] [Abstract][Full Text] [Related]
7. Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages. Rocca A; Marino A; Del Turco S; Cappello V; Parlanti P; Pellegrino M; Golberg D; Mattoli V; Ciofani G Biochim Biophys Acta; 2016 Apr; 1860(4):775-84. PubMed ID: 26825772 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of boron nitride nanotubes and hexagonal boron nitrides as nanocarriers for cancer drugs. Emanet M; Şen Ö; Çulha M Nanomedicine (Lond); 2017 Apr; 12(7):797-810. PubMed ID: 28322118 [TBL] [Abstract][Full Text] [Related]
9. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Ciofani G; Del Turco S; Rocca A; de Vito G; Cappello V; Yamaguchi M; Li X; Mazzolai B; Basta G; Gemmi M; Piazza V; Golberg D; Mattoli V Nanomedicine (Lond); 2014 May; 9(6):773-88. PubMed ID: 24981649 [TBL] [Abstract][Full Text] [Related]
10. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Chen X; Wu P; Rousseas M; Okawa D; Gartner Z; Zettl A; Bertozzi CR J Am Chem Soc; 2009 Jan; 131(3):890-1. PubMed ID: 19119844 [TBL] [Abstract][Full Text] [Related]
11. Targeted delivery of Auristatin PE to Hep G2 cells using folate - conjugated boron nitride nanotubes. Li W; Xie X; Wu T; Yang H; Peng Y; Luo L; Chen Y Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110509. PubMed ID: 32228939 [TBL] [Abstract][Full Text] [Related]
12. A simple approach to covalent functionalization of boron nitride nanotubes. Ciofani G; Genchi GG; Liakos I; Athanassiou A; Dinucci D; Chiellini F; Mattoli V J Colloid Interface Sci; 2012 May; 374(1):308-14. PubMed ID: 22341699 [TBL] [Abstract][Full Text] [Related]
13. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Li W; Xie X; Wu T; Lin H; Luo L; Yang H; Li J; Xin Y; Lin X; Chen Y Colloids Surf B Biointerfaces; 2019 Sep; 181():305-314. PubMed ID: 31154141 [TBL] [Abstract][Full Text] [Related]
14. Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Danti S; Ciofani G; Moscato S; D'Alessandro D; Ciabatti E; Nesti C; Brescia R; Bertoni G; Pietrabissa A; Lisanti M; Petrini M; Mattoli V; Berrettini S Nanotechnology; 2013 Nov; 24(46):465102. PubMed ID: 24150892 [TBL] [Abstract][Full Text] [Related]
15. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications. Lee CH; Bhandari S; Tiwari B; Yapici N; Zhang D; Yap YK Molecules; 2016 Jul; 21(7):. PubMed ID: 27428947 [TBL] [Abstract][Full Text] [Related]
16. In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. Salvetti A; Rossi L; Iacopetti P; Li X; Nitti S; Pellegrino T; Mattoli V; Golberg D; Ciofani G Nanomedicine (Lond); 2015 Jul; 10(12):1911-22. PubMed ID: 25835434 [TBL] [Abstract][Full Text] [Related]
17. Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies. Ferreira TH; Soares DC; Moreira LM; da Silva PR; dos Santos RG; de Sousa EM Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4616-23. PubMed ID: 24094168 [TBL] [Abstract][Full Text] [Related]
18. Pilot in vivo toxicological investigation of boron nitride nanotubes. Ciofani G; Danti S; Genchi GG; D'Alessandro D; Pellequer JL; Odorico M; Mattoli V; Giorgi M Int J Nanomedicine; 2012; 7():19-24. PubMed ID: 22275819 [TBL] [Abstract][Full Text] [Related]
19. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Alaraby M; Hernández A; Marcos R Nanotoxicology; 2016 Aug; 10(6):749-60. PubMed ID: 26634780 [TBL] [Abstract][Full Text] [Related]
20. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. Li X; Wang X; Jiang X; Yamaguchi M; Ito A; Bando Y; Golberg D J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):323-9. PubMed ID: 25766516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]