These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2995314)

  • 1. Regulation of the glucose phosphotransferase system in Brochothrix thermosphacta by membrane energization.
    Singh SP; Bishop CJ; Vink R; Rogers PJ
    J Bacteriol; 1985 Oct; 164(1):367-78. PubMed ID: 2995314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of transmembrane movement of glucose and glucose analogs in Streptococcus mutants Ingbritt.
    Dashper SG; Reynolds EC
    J Bacteriol; 1990 Feb; 172(2):556-63. PubMed ID: 2298698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms.
    Keevil CW; Williamson MI; Marsh PD; Ellwood DC
    Arch Oral Biol; 1984; 29(11):871-8. PubMed ID: 6097204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion.
    Bond DR; Russell JB
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose transport by lobster hepatopancreatic brush-border membrane vesicles.
    Ahearn GA; Grover ML; Dunn RE
    Am J Physiol; 1985 Feb; 248(2 Pt 2):R133-41. PubMed ID: 3970230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.
    Otto R; Lageveen RG; Veldkamp H; Konings WN
    J Bacteriol; 1982 Feb; 149(2):733-8. PubMed ID: 7056700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two glucose transport systems in Bacillus licheniformis.
    Tangney M; Priest FG; Mitchell WJ
    J Bacteriol; 1993 Apr; 175(7):2137-42. PubMed ID: 8384621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside.
    Vadeboncoeur C; Trahan L
    Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine 5'-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli.
    Tsuchiya T
    J Bacteriol; 1977 Feb; 129(2):763-9. PubMed ID: 14110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicles prepared from Streptococcus mutans demonstrate the presence of a second glucose transport system.
    Buckley ND; Hamilton IR
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2639-48. PubMed ID: 8000534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system.
    Begley GS; Hansen DE; Jacobson GR; Knowles JR
    Biochemistry; 1982 Oct; 21(22):5552-6. PubMed ID: 6756472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials.
    Warnock DG; Yee VJ
    J Clin Invest; 1981 Jan; 67(1):103-15. PubMed ID: 7451645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar transport and potassium permeability in yeast plasma membrane vesicles.
    Fuhrmann GF; Boehm C; Theuvenet AP
    Biochim Biophys Acta; 1976 May; 433(3):583-96. PubMed ID: 776224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonmotive force driven 6-deoxyglucose uptake by the oral pathogen, Streptococcus mutans Ingbritt.
    Keevil CW; McDermid AS; Marsh PD; Ellwood DC
    Arch Microbiol; 1986 Nov; 146(2):118-24. PubMed ID: 3800553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.