These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2995314)

  • 61. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida.
    Binet MR; Bouvet OM
    Res Microbiol; 1998 Feb; 149(2):83-94. PubMed ID: 9766212
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glucose transport by mixed ruminal bacteria from a cow.
    Kajikawa H; Amari M; Masaki S
    Appl Environ Microbiol; 1997 May; 63(5):1847-51. PubMed ID: 9143117
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Haase W; Schulz I
    J Membr Biol; 1985; 87(2):107-19. PubMed ID: 2416927
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of colicins K and E1 on the glucose phosphotransferase system.
    Jetten AM
    Biochim Biophys Acta; 1976 Aug; 440(2):403-11. PubMed ID: 182245
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Factors affecting growth and lipase production by meat lactobacilli strains and Brochothrix thermosphacta.
    Papon M; Talon R
    J Appl Bacteriol; 1988 Feb; 64(2):107-15. PubMed ID: 3372396
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF
    J Dent Res; 1975; 54(2):330-8. PubMed ID: 1054344
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The intracellular pH of the thermophilic bacterium Thermoanaerobacter wiegelii during growth and production of fermentation acids.
    Cook GM
    Extremophiles; 2000 Oct; 4(5):279-84. PubMed ID: 11057912
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inactivation of the phosphoenolpyruvate-dependent phosphotransferase system in various species of bacteria by vinylglycolic acid.
    Snyder MA; Kaczorowski GJ; Barnes EM; Walsh C
    J Bacteriol; 1976 Jul; 127(1):671-3. PubMed ID: 931953
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles.
    Hildmann B; Storelli C; Haase W; Barac-Nieto M; Murer H
    Biochem J; 1980 Jan; 186(1):169-76. PubMed ID: 7370006
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation.
    Reizer J; Saier MH; Deutscher J; Grenier F; Thompson J; Hengstenberg W
    Crit Rev Microbiol; 1988; 15(4):297-338. PubMed ID: 3060316
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Potassium transport coupled to ATP hydrolysis in reconstituted proteoliposomes of yeast plasma membrane ATPase.
    Villalobo A
    J Biol Chem; 1982 Feb; 257(4):1824-8. PubMed ID: 6120168
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells.
    Navon G; Ogawa S; Shulman RG; Yamane T
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):888-91. PubMed ID: 15257
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On the mode of action of the bacteriocin butyricin 7423. Effects on membrane potential and potassium-ion accumulation in Clostridium pasteurianum.
    Clarke DJ; Morley CD; Kell DB; Morris JG
    Eur J Biochem; 1982 Sep; 127(1):105-16. PubMed ID: 6216104
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Formate increases the F0F1-ATPase activity in Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH.
    Bagramyan K; Mnatsakanyan N; Trchounian A
    Biochem Biophys Res Commun; 2003 Jun; 306(2):361-5. PubMed ID: 12804571
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.