BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29953209)

  • 1. Effect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films.
    Gençer A; Van Rie J; Lombardo S; Kang K; Thielemans W
    Biomacromolecules; 2018 Aug; 19(8):3233-3243. PubMed ID: 29953209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films.
    Gençer A; Schütz C; Thielemans W
    Langmuir; 2017 Jan; 33(1):228-234. PubMed ID: 28034313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of arabinoxylan on the drying of cellulose nanocrystals suspension: From coffee ring to Maltese cross pattern and application to enzymatic detection.
    Talantikite M; Leray N; Durand S; Moreau C; Cathala B
    J Colloid Interface Sci; 2021 Apr; 587():727-735. PubMed ID: 33234309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions.
    Chang MH; Oh-E M
    Sci Rep; 2022 Dec; 12(1):21042. PubMed ID: 36470939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of glycerol and ionic strength on the rheological behavior of cellulose nanocrystals suspension system.
    Qin Y; Chang R; Ge S; Xiong L; Sun Q
    Int J Biol Macromol; 2017 Sep; 102():1073-1082. PubMed ID: 28476596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-axis alignment of Rod-like cellulose nanocrystals in drying droplets.
    Pritchard CQ; Navarro F; Roman M; Bortner MJ
    J Colloid Interface Sci; 2021 Dec; 603():450-458. PubMed ID: 34214721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals.
    Wang Z; Yuan Y; Hu J; Yang J; Feng F; Yu Y; Liu P; Men Y; Zhang J
    Carbohydr Polym; 2020 Oct; 245():116459. PubMed ID: 32718601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Ranjbar D; Hatzikiriakos SG
    Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals-xyloglucan multilayered thin films.
    Dammak A; Moreau C; Azzam F; Jean B; Cousin F; Cathala B
    J Colloid Interface Sci; 2015 Dec; 460():214-20. PubMed ID: 26322493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-Thaw Gelation of Cellulose Nanocrystals.
    Lewis L; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    ACS Macro Lett; 2019 May; 8(5):486-491. PubMed ID: 35619375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures.
    Amini M; Kamkar M; Ahmadijokani F; Ghaderi S; Rojas OJ; Hosseini H; Arjmand M
    Biomacromolecules; 2023 Feb; 24(2):775-788. PubMed ID: 36546647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly behaviors of colloidal cellulose nanocrystals: A tale of stabilization mechanisms.
    Bruel C; Davies TS; Carreau PJ; Tavares JR; Heuzey MC
    J Colloid Interface Sci; 2020 Aug; 574():399-409. PubMed ID: 32339823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation.
    Abitbol T; Mijlkovic A; Malafronte L; Stevanic JS; Larsson PT; Lopez-Sanchez P
    Carbohydr Polym; 2021 May; 260():117345. PubMed ID: 33712116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique.
    Chen Q; Liu P; Nan F; Zhou L; Zhang J
    Biomacromolecules; 2014 Nov; 15(11):4343-50. PubMed ID: 25300554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts.
    Cao T; Elimelech M
    J Colloid Interface Sci; 2021 Feb; 584():456-463. PubMed ID: 33091869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.