BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29953260)

  • 1. Confident application of a global human liver microsomal activity QSAR.
    Stålring J; Sohlenius-Sternbeck AK; Terelius Y; Parkes K
    Future Med Chem; 2018 Jul; 10(13):1575-1588. PubMed ID: 29953260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.
    Hu Y; Unwalla R; Denny RA; Bikker J; Di L; Humblet C
    J Comput Aided Mol Des; 2010 Jan; 24(1):23-35. PubMed ID: 19937264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of in silico models for human liver microsomal stability.
    Lee PH; Cucurull-Sanchez L; Lu J; Du YJ
    J Comput Aided Mol Des; 2007 Dec; 21(12):665-73. PubMed ID: 17599241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery.
    Aliagas I; Gobbi A; Heffron T; Lee ML; Ortwine DF; Zak M; Khojasteh SC
    J Comput Aided Mol Des; 2015 Apr; 29(4):327-38. PubMed ID: 25708388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.
    Perryman AL; Stratton TP; Ekins S; Freundlich JS
    Pharm Res; 2016 Feb; 33(2):433-49. PubMed ID: 26415647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The current limits in virtual screening and property prediction.
    Hutter MC
    Future Med Chem; 2018 Jul; 10(13):1623-1635. PubMed ID: 29953247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
    Tropsha A; Golbraikh A
    Curr Pharm Des; 2007; 13(34):3494-504. PubMed ID: 18220786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Siramshetty VB; Shah P; Kerns E; Nguyen K; Yu KR; Kabir M; Williams J; Neyra J; Southall N; Nguyễn ÐT; Xu X
    Sci Rep; 2020 Nov; 10(1):20713. PubMed ID: 33244000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of hepatic microsomal intrinsic clearance and human clearance values for drugs.
    Nikolic K; Agababa D
    J Mol Graph Model; 2009 Oct; 28(3):245-52. PubMed ID: 19713138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular target engagement: a new paradigm in drug discovery.
    Babic I; Kesari S; Nurmemmedov E
    Future Med Chem; 2018 Jul; 10(14):1641-1644. PubMed ID: 29957028
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative Proteomics Analysis of Human Liver Microsomes and S9 Fractions.
    Wang X; He B; Shi J; Li Q; Zhu HJ
    Drug Metab Dispos; 2020 Jan; 48(1):31-40. PubMed ID: 31699809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets.
    Winiwarter S; Chang G; Desai P; Menzel K; Faller B; Arimoto R; Keefer C; Broccatell F
    Mol Pharm; 2019 Sep; 16(9):4077-4085. PubMed ID: 31348668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fragment-Based Approach for the Computational Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes.
    Nair PC; McKinnon RA; Miners JO
    Drug Metab Dispos; 2016 Nov; 44(11):1794-1798. PubMed ID: 27543205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of in silico models for fraction of unbound drug in human liver microsomes.
    Gao H; Steyn SJ; Chang G; Lin J
    Expert Opin Drug Metab Toxicol; 2010 May; 6(5):533-42. PubMed ID: 20233033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties.
    Gupta RR; Gifford EM; Liston T; Waller CL; Hohman M; Bunin BA; Ekins S
    Drug Metab Dispos; 2010 Nov; 38(11):2083-90. PubMed ID: 20693417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints.
    Koutsoukas A; Chang G; Keefer CE
    J Chem Inf Model; 2019 Jan; 59(1):477-485. PubMed ID: 30497262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods.
    Li L; Lu Z; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2022 Sep; 35(9):1614-1624. PubMed ID: 36053050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.
    Chen M; Hong H; Fang H; Kelly R; Zhou G; Borlak J; Tong W
    Toxicol Sci; 2013 Nov; 136(1):242-9. PubMed ID: 23997115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building Quantitative Structure-Activity Relationship Models Using Bayesian Additive Regression Trees.
    Feng D; Svetnik V; Liaw A; Pratola M; Sheridan RP
    J Chem Inf Model; 2019 Jun; 59(6):2642-2655. PubMed ID: 30998343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.