These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29953453)

  • 21. Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants.
    Perales C; Mateo R; Mateu MG; Domingo E
    J Mol Biol; 2007 Jun; 369(4):985-1000. PubMed ID: 17481660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice.
    Shinya K; Hamm S; Hatta M; Ito H; Ito T; Kawaoka Y
    Virology; 2004 Mar; 320(2):258-66. PubMed ID: 15016548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.
    Gong XQ; Ruan BY; Liu XM; Zhang P; Wang XH; Wang Q; Shan TL; Tong W; Zhou YJ; Li GX; Zheng H; Tong GZ; Yu H
    Res Vet Sci; 2018 Apr; 117():54-56. PubMed ID: 29175013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical characterization of the fidelity of poliovirus RNA-dependent RNA polymerase.
    Freistadt MS; Vaccaro JA; Eberle KE
    Virol J; 2007 May; 4():44. PubMed ID: 17524144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cost of replication fidelity in an RNA virus.
    Furió V; Moya A; Sanjuán R
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10233-7. PubMed ID: 16006529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication.
    Liu Y; Zheng Z; Shu B; Meng J; Zhang Y; Zheng C; Ke X; Gong P; Hu Q; Wang H
    J Virol; 2016 Dec; 90(23):10472-10485. PubMed ID: 27630238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice.
    Sang X; Wang A; Chai T; He X; Ding J; Gao X; Li Y; Zhang K; Ren Z; Li L; Yu Z; Wang T; Feng N; Zheng X; Wang H; Zhao Y; Yang S; Gao Y; Xia X
    Arch Virol; 2015 May; 160(5):1267-77. PubMed ID: 25782865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Determinants of Virulence and Stability of a Reporter-Expressing H5N1 Influenza A Virus.
    Zhao D; Fukuyama S; Yamada S; Lopes TJ; Maemura T; Katsura H; Ozawa M; Watanabe S; Neumann G; Kawaoka Y
    J Virol; 2015 Nov; 89(22):11337-46. PubMed ID: 26339046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis.
    Fornés J; Tomás Lázaro J; Alarcón T; Elena SF; Sardanyés J
    J Theor Biol; 2019 Jan; 460():170-183. PubMed ID: 30300648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental evolution of RNA versus DNA viruses.
    Domingo-Calap P; Sanjuán R
    Evolution; 2011 Oct; 65(10):2987-94. PubMed ID: 21967437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of mutational robustness in RNA virus evolution.
    Lauring AS; Frydman J; Andino R
    Nat Rev Microbiol; 2013 May; 11(5):327-36. PubMed ID: 23524517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pacing a small cage: mutation and RNA viruses.
    Belshaw R; Gardner A; Rambaut A; Pybus OG
    Trends Ecol Evol; 2008 Apr; 23(4):188-93. PubMed ID: 18295930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel residues in the PA protein of avian influenza H7N7 virus affect virulence in mammalian hosts.
    Zhao H; Chu H; Zhao X; Shuai H; Wong BH; Wen L; Yuan S; Zheng BJ; Zhou J; Yuen KY
    Virology; 2016 Nov; 498():1-8. PubMed ID: 27525812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delayed lysis confers resistance to the nucleoside analogue 5-fluorouracil and alleviates mutation accumulation in the single-stranded DNA bacteriophage ϕX174.
    Pereira-Gómez M; Sanjuán R
    J Virol; 2014 May; 88(9):5042-9. PubMed ID: 24554658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do persistent RNA viruses fit the trade-off hypothesis of virulence evolution?
    Márquez LM; Roossinck MJ
    Curr Opin Virol; 2012 Oct; 2(5):556-60. PubMed ID: 22819020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of viral mutation.
    Sanjuán R; Domingo-Calap P
    Cell Mol Life Sci; 2016 Dec; 73(23):4433-4448. PubMed ID: 27392606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The three faces of riboviral spontaneous mutation: spectrum, mode of genome replication, and mutation rate.
    García-Villada L; Drake JW
    PLoS Genet; 2012; 8(7):e1002832. PubMed ID: 22844250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation.
    Grdzelishvili VZ; Smallwood S; Tower D; Hall RL; Hunt DM; Moyer SA
    J Virol; 2005 Jun; 79(12):7327-37. PubMed ID: 15919887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases.
    Selisko B; Papageorgiou N; Ferron F; Canard B
    Viruses; 2018 Jan; 10(2):. PubMed ID: 29385764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lethal mutagenesis: targeting the mutator phenotype in cancer.
    Fox EJ; Loeb LA
    Semin Cancer Biol; 2010 Oct; 20(5):353-9. PubMed ID: 20934515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.