These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2995347)

  • 1. Proteolytic fragments identified with domains of the aspartate chemoreceptor.
    Mowbray SL; Foster DL; Koshland DE
    J Biol Chem; 1985 Sep; 260(21):11711-8. PubMed ID: 2995347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of the aspartate chemoreceptor.
    Foster DL; Mowbray SL; Jap BK; Koshland DE
    J Biol Chem; 1985 Sep; 260(21):11706-10. PubMed ID: 2995346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis.
    Terwilliger TC; Wang JY; Koshland DE
    J Biol Chem; 1986 Aug; 261(23):10814-20. PubMed ID: 3015942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amino terminus of the aspartate chemoreceptor is formylmethionine.
    Milligan DL; Koshland DE
    J Biol Chem; 1990 Mar; 265(8):4455-60. PubMed ID: 2155229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium.
    Weigel N; Powers DA; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14499-509. PubMed ID: 6754732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Major intrinsic polypeptide of lens membrane. Biochemical and immunological characterization of the major cyanogen bromide fragment.
    Takemoto LJ; Hansen JS; Nicholson BJ; Hunkapiller M; Revel JP; Horwitz J
    Biochim Biophys Acta; 1983 Jun; 731(2):267-74. PubMed ID: 6849923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolytic cleavage of the multienzyme polypeptide CAD to release the mammalian aspartate transcarbamoylase. Biochemical comparison with the homologous Escherichia coli catalytic subunit.
    Hemmens B; Carrey EA
    Eur J Biochem; 1994 Nov; 225(3):845-53. PubMed ID: 7957221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct photolabeling of the cGMP-stimulated cyclic nucleotide phosphodiesterase.
    Stroop SD; Charbonneau H; Beavo JA
    J Biol Chem; 1989 Aug; 264(23):13718-25. PubMed ID: 2547773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of the approximately 12 kDa M(r) discrepancy in gel migration of the mouse glucocorticoid receptor to the major phosphorylated cyanogen bromide fragment in the transactivating domain.
    Hutchison KA; Dalman FC; Hoeck W; Groner B; Pratt WB
    J Steroid Biochem Mol Biol; 1993 Dec; 46(6):681-6. PubMed ID: 8274402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino acid sequence of the histidine binding protein of Salmonella typhimurium.
    Hogg RW
    J Biol Chem; 1981 Feb; 256(4):1935-9. PubMed ID: 7007375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary structure of tyrosinase from Neurospora crassa. I. Purification and amino acid sequence of the cyanogen bromide fragments.
    Lerch K; Longoni C; Jordi E
    J Biol Chem; 1982 Jun; 257(11):6408-13. PubMed ID: 6210695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the cyanogen bromide fragments of the beta chain of human haptoglobin.
    Kurosky A; Hay RE; Kim H; Touchstone B; Rasco MA; Bowman BH
    Biochemistry; 1976 Nov; 15(24):5326-36. PubMed ID: 999809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium.
    Scott WG; Milligan DL; Milburn MV; Privé GG; Yeh J; Koshland DE; Kim SH
    J Mol Biol; 1993 Jul; 232(2):555-73. PubMed ID: 8345523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of human erythrocyte spectrin. I. Isolation of the alpha-I domain and its cyanogen bromide peptides.
    Speicher DW; Davis G; Yurchenco PD; Marchesi VT
    J Biol Chem; 1983 Dec; 258(24):14931-7. PubMed ID: 6654895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the primary structure of the strongly hydrophobic brain myelin proteolipid apoprotein (lipophilin). Isolation and amino acid sequence determination of proteolytic fragments.
    Stoffel W; Schröder W; Hillen H; Deutzmann R
    Hoppe Seylers Z Physiol Chem; 1982 Sep; 363(9):1117-31. PubMed ID: 7141416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional studies of the dnaB protein using limited proteolysis. Characterization of domains for DNA-dependent ATP hydrolysis and for protein association in the primosome.
    Nakayama N; Arai N; Kaziro Y; Arai K
    J Biol Chem; 1984 Jan; 259(1):88-96. PubMed ID: 6323419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major proteins of the Escherichia coli outer cell envelope membrane. Sequence of the cyanogen bromide fragments of protein I from Escherichia coli B/r.
    Chen R; Hindennach I; Henning U
    Hoppe Seylers Z Physiol Chem; 1978 Dec; 359(12):1807-10. PubMed ID: 367913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional characterization of proteolytic fragments derived from the C-terminal regions of bovine fibrinogen.
    Litvinovich SV; Henschen AH; Krieglstein KG; Ingham KC; Medved LV
    Eur J Biochem; 1995 May; 229(3):605-14. PubMed ID: 7758453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. I. Amino acid sequence of the cyanogen bromide peptides.
    Kingston IB; Kingston BL; Putnam FW
    J Biol Chem; 1980 Apr; 255(7):2878-85. PubMed ID: 6987229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete amino acid sequence of a histidine-rich proteolytic fragment of human ceruloplasmin.
    Kingston IB; Kingston BL; Putnam FW
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1668-72. PubMed ID: 287005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.