These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 29953582)

  • 1. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis.
    Fujisawa Y; Otomo Y; Ogata Y; Nakamura Y; Fujita R; Ishitsuka Y; Watanabe R; Okiyama N; Ohara K; Fujimoto M
    Br J Dermatol; 2019 Feb; 180(2):373-381. PubMed ID: 29953582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi.
    Tognetti L; Bonechi S; Andreini P; Bianchini M; Scarselli F; Cevenini G; Moscarella E; Farnetani F; Longo C; Lallas A; Carrera C; Puig S; Tiodorovic D; Perrot JL; Pellacani G; Argenziano G; Cinotti E; Cataldo G; Balistreri A; Mecocci A; Gori M; Rubegni P; Cartocci A
    J Dermatol Sci; 2021 Feb; 101(2):115-122. PubMed ID: 33358096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermatologist-level classification of malignant lip diseases using a deep convolutional neural network.
    Cho SI; Sun S; Mun JH; Kim C; Kim SY; Cho S; Youn SW; Kim HC; Chung JH
    Br J Dermatol; 2020 Jun; 182(6):1388-1394. PubMed ID: 31449661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.
    Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC;
    J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior skin cancer classification by the combination of human and artificial intelligence.
    Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ;
    Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population.
    Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ
    Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep neural networks are superior to dermatologists in melanoma image classification.
    Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS
    Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning.
    Jinnai S; Yamazaki N; Hirano Y; Sugawara Y; Ohe Y; Hamamoto R
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis.
    Fujimoto A; Iwai Y; Ishikawa T; Shinkuma S; Shido K; Yamasaki K; Fujisawa Y; Fujimoto M; Muramatsu S; Abe R
    J Allergy Clin Immunol Pract; 2022 Jan; 10(1):277-283. PubMed ID: 34547536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.
    Maron RC; Weichenthal M; Utikal JS; Hekler A; Berking C; Hauschild A; Enk AH; Haferkamp S; Klode J; Schadendorf D; Jansen P; Holland-Letz T; Schilling B; von Kalle C; Fröhling S; Gaiser MR; Hartmann D; Gesierich A; Kähler KC; Wehkamp U; Karoglan A; Bär C; Brinker TJ;
    Eur J Cancer; 2019 Sep; 119():57-65. PubMed ID: 31419752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders.
    Han SS; Park I; Eun Chang S; Lim W; Kim MS; Park GH; Chae JB; Huh CH; Na JI
    J Invest Dermatol; 2020 Sep; 140(9):1753-1761. PubMed ID: 32243882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Holland-Letz T; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 May; 113():47-54. PubMed ID: 30981091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
    Al-Masni MA; Kim DH; Kim TS
    Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists.
    Yang Y; Wang J; Xie F; Liu J; Shu C; Wang Y; Zheng Y; Zhang H
    Comput Biol Med; 2021 Dec; 139():104924. PubMed ID: 34688173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional neural network with fusion strategy for skin cancer recognition: model development and validation.
    Juan CK; Su YH; Wu CY; Yang CS; Hsu CH; Hung CL; Chen YJ
    Sci Rep; 2023 Oct; 13(1):17087. PubMed ID: 37816815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dermatologist-level classification of skin cancer with deep neural networks.
    Esteva A; Kuprel B; Novoa RA; Ko J; Swetter SM; Blau HM; Thrun S
    Nature; 2017 Feb; 542(7639):115-118. PubMed ID: 28117445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network assistance significantly improves dermatologists' diagnosis of cutaneous tumours using clinical images.
    Ba W; Wu H; Chen WW; Wang SH; Zhang ZY; Wei XJ; Wang WJ; Yang L; Zhou DM; Zhuang YX; Zhong Q; Song ZG; Li CX
    Eur J Cancer; 2022 Jul; 169():156-165. PubMed ID: 35569282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.