BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 29953730)

  • 1. Structure-Guided Engineering of α-Keto Acid Decarboxylase for the Production of Higher Alcohols at Elevated Temperature.
    Sutiono S; Carsten J; Sieber V
    ChemSusChem; 2018 Sep; 11(18):3335-3344. PubMed ID: 29953730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae.
    Milne N; van Maris AJ; Pronk JT; Daran JM
    Biotechnol Biofuels; 2015; 8():204. PubMed ID: 26628917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a Thermostable Keto Acid Decarboxylase Using Directed Evolution and Computationally Directed Protein Design.
    Soh LMJ; Mak WS; Lin PP; Mi L; Chen FY; Damoiseaux R; Siegel JB; Liao JC
    ACS Synth Biol; 2017 Apr; 6(4):610-618. PubMed ID: 28052191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
    Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched-chain 2-keto acid decarboxylases derived from Psychrobacter.
    Wei J; Timler JG; Knutson CM; Barney BM
    FEMS Microbiol Lett; 2013 Sep; 346(2):105-12. PubMed ID: 23826991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.
    Stribny J; Romagnoli G; Pérez-Torrado R; Daran JM; Querol A
    Microb Cell Fact; 2016 Mar; 15():51. PubMed ID: 26971319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-guided engineering of branched-chain α-keto acid decarboxylase for improved 1,2,4-butanetriol production by in vitro synthetic enzymatic biosystem.
    Lv K; Cao X; Pedroso MM; Wu B; Li J; He B; Schenk G
    Int J Biol Macromol; 2024 Jan; 255():128303. PubMed ID: 37992939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase.
    Yep A; Kenyon GL; McLeish MJ
    Bioorg Chem; 2006 Dec; 34(6):325-36. PubMed ID: 17028071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of higher alcohols by Saccharomyces carlsbergensis from branched-chain amino acids and their keto analogs].
    Rabinovich SE; Nedugova NE; Kagan ZS; Gracheva IM
    Mikrobiologiia; 1979; 48(4):625-31. PubMed ID: 39225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis provides insights into the structural basis for the chemoselective and enantioselective carboligation reaction.
    Berthold CL; Gocke D; Wood MD; Leeper FJ; Pohl M; Schneider G
    Acta Crystallogr D Biol Crystallogr; 2007 Dec; 63(Pt 12):1217-24. PubMed ID: 18084069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Engineering of Bacillus cereus Leucine Dehydrogenase Towards α-keto Acid Reduction for Improving Unnatural Amino Acid Production.
    Zhou J; Wang Y; Chen J; Xu M; Yang T; Zheng J; Zhang X; Rao Z
    Biotechnol J; 2019 Mar; 14(3):e1800253. PubMed ID: 30052323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property.
    Jiang Y; Li Z; Wang C; Zhou YJ; Xu H; Li S
    Biotechnol Biofuels; 2019; 12():79. PubMed ID: 30996734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters.
    Huang L; Xu JH; Yu HL
    J Biotechnol; 2015 Jun; 203():54-61. PubMed ID: 25795440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.
    Derrick S; Large PJ
    J Gen Microbiol; 1993 Nov; 139(11):2783-92. PubMed ID: 8277258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of two new 5-keto-4-deoxy-D-Glucarate Dehydratases/Decarboxylases.
    Pick A; Beer B; Hemmi R; Momma R; Schmid J; Miyamoto K; Sieber V
    BMC Biotechnol; 2016 Nov; 16(1):80. PubMed ID: 27855668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Reconstructed Common Ancestor of the Fatty Acid Photo-decarboxylase Clade Shows Photo-decarboxylation Activity and Increased Thermostability.
    Sun Y; Calderini E; Kourist R
    Chembiochem; 2021 May; 22(10):1833-1840. PubMed ID: 33539041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation.
    Smit BA; van Hylckama Vlieg JE; Engels WJ; Meijer L; Wouters JT; Smit G
    Appl Environ Microbiol; 2005 Jan; 71(1):303-11. PubMed ID: 15640202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures.
    Chokhawala HA; Roche CM; Kim TW; Atreya ME; Vegesna N; Dana CM; Blanch HW; Clark DS
    BMC Biotechnol; 2015 Feb; 15(1):11. PubMed ID: 25879765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.