BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29954073)

  • 1. The Microstructure-Mechanical Properties of Hybrid Fibres-Reinforced Self-Compacting Lightweight Concrete with Perlite Aggregate.
    Barnat-Hunek D; Góra J; Andrzejuk W; Łagód G
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29954073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RSM-based modelling for predicting and optimizing the rheological and mechanical properties of fibre-reinforced laterized self-compacting concrete.
    Patil S; Ramesh B; Sathish T; Saravanan A
    Heliyon; 2024 Feb; 10(4):e25973. PubMed ID: 38390106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mechanical Properties and Chloride Resistance of Concrete Reinforced with Hybrid Polypropylene and Basalt Fibres.
    Hu X; Guo Y; Lv J; Mao J
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of eco-efficient lightweight self-compacting concrete with high volume of recycled EPS waste materials.
    Hilal N; Hamah Sor N; Faraj RH
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50028-50051. PubMed ID: 33945091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Effects of Metakaolin and Hybrid Fibers on Self-Compacting Concrete.
    Bede Odorčić N; Kravanja G
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight Reactive Powder Concrete Containing Expanded Perlite.
    Grzeszczyk S; Janus G
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of nanosunflower ash and nanowalnut shell ash on sustainable lightweight self-compacting concrete characteristics.
    Hilal N; Hamah Sor N; Hadzima-Nyarko M; Radu D; Tawfik TA
    Sci Rep; 2024 Apr; 14(1):9450. PubMed ID: 38658797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties and Crack Resistance of Basalt Fiber Self-Compacting High Strength Concrete: An Experimental Study.
    Xue Z; Qi P; Yan Z; Pei Q; Zhong J; Zhan Q
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes.
    Zhu Y; Cui H; Tang W
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties of Recycled Aggregate Concretes Containing Silica Fume and Steel Fibres.
    Jahandari S; Mohammadi M; Rahmani A; Abolhasani M; Miraki H; Mohammadifar L; Kazemi M; Saberian M; Rashidi M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Properties of Chopped Basalt Fiber-Reinforced Lightweight Aggregate Concrete and Chopped Polyacrylonitrile Fiber Reinforced Lightweight Aggregate Concrete.
    Zeng Y; Zhou X; Tang A; Sun P
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32268580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of Tire-Derived Fiber: The Contribution of Steel Cord on the Properties of Lightweight Concrete Based on Perlite Aggregate.
    Kadela M; Małek M; Jackowski M; Kunikowski M; Klimek A; Dudek D; Rośkowicz M
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Composite Slab Using Crushed Waste Tires as Fine Aggregate in Self-Compacting Lightweight Aggregate Concrete.
    Lv J; Zhou T; Wu H; Sang L; He Z; Li G; Li K
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32503286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macro-Mesoscale Mechanical Properties of Basalt-Polyvinyl Alcohol Hybrid Fiber-Reinforced Low-Heat Portland Cement Concrete.
    Zhang Y; Zheng Y
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete.
    Aslani F; Hamidi F; Ma Q
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the bond strength and microstructure of the interfacial transition zone between cement paste and aggregate modified by Bayer red mud.
    Li X; Zhang Q; Mao S
    J Hazard Mater; 2021 Feb; 403():123482. PubMed ID: 33264845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Fracture Properties of Four Fibre Reinforced High Performance Cementitious Composites.
    Smarzewski P
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32521702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Polypropylene and Steel Fibers on the Performance and Crack Repair of Self-Compacting Concrete.
    Abed MA; Fořt J; Naoulo A; Essa A
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on the Mechanical and Physical Properties of Basalt Fiber-Reinforced Pervious Concrete.
    Wu J; Pang Q; Lv Y; Zhang J; Gao S
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer.
    Pu BC; Liu B; Li L; Pang W; Wan Z
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.