These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29954078)

  • 1. Regulation of Root Development and Architecture by Strigolactones under Optimal and Nutrient Deficiency Conditions.
    Marzec M; Melzer M
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29954078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of strigolactones in root development.
    Sun H; Tao J; Gu P; Xu G; Zhang Y
    Plant Signal Behav; 2016; 11(1):e1110662. PubMed ID: 26515106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
    Borghi L; Liu GW; Emonet A; Kretzschmar T; Martinoia E
    Planta; 2016 Jun; 243(6):1351-60. PubMed ID: 27040840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strigolactones are regulators of root development.
    Koltai H
    New Phytol; 2011 May; 190(3):545-9. PubMed ID: 21638793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions.
    Koltai H
    Ann Bot; 2013 Jul; 112(2):409-15. PubMed ID: 23059852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of strigolactones in nutrient-stress responses in plants.
    Marzec M; Muszynska A; Gruszka D
    Int J Mol Sci; 2013 Apr; 14(5):9286-304. PubMed ID: 23629665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strigolactone signaling in root development and phosphate starvation.
    Kumar M; Pandya-Kumar N; Kapulnik Y; Koltai H
    Plant Signal Behav; 2015; 10(7):e1045174. PubMed ID: 26251884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis.
    Kapulnik Y; Delaux PM; Resnick N; Mayzlish-Gati E; Wininger S; Bhattacharya C; Séjalon-Delmas N; Combier JP; Bécard G; Belausov E; Beeckman T; Dor E; Hershenhorn J; Koltai H
    Planta; 2011 Jan; 233(1):209-16. PubMed ID: 21080198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.
    Bharti N; Bhatla SC
    Plant Signal Behav; 2015; 10(8):e1054087. PubMed ID: 26076049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.
    Kapulnik Y; Resnick N; Mayzlish-Gati E; Kaplan Y; Wininger S; Hershenhorn J; Koltai H
    J Exp Bot; 2011 May; 62(8):2915-24. PubMed ID: 21307387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strigolactone signal is required for adventitious root formation in rice.
    Sun H; Tao J; Hou M; Huang S; Chen S; Liang Z; Xie T; Wei Y; Xie X; Yoneyama K; Xu G; Zhang Y
    Ann Bot; 2015 Jun; 115(7):1155-62. PubMed ID: 25888593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?
    Yoneyama K
    Cold Spring Harb Perspect Biol; 2019 Aug; 11(8):. PubMed ID: 31088825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in strigolactone research: chemical and biological aspects.
    Seto Y; Kameoka H; Yamaguchi S; Kyozuka J
    Plant Cell Physiol; 2012 Nov; 53(11):1843-53. PubMed ID: 23054391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strigolactones as mediators of plant growth responses to environmental conditions.
    Koltai H; Kapulnik Y
    Plant Signal Behav; 2011 Jan; 6(1):37-41. PubMed ID: 21248472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots.
    Gamir J; Torres-Vera R; Rial C; Berrio E; de Souza Campos PM; Varela RM; Macías FA; Pozo MJ; Flors V; López-Ráez JA
    Plant Cell Environ; 2020 Jul; 43(7):1655-1668. PubMed ID: 32222984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress.
    Liu J; He H; Vitali M; Visentin I; Charnikhova T; Haider I; Schubert A; Ruyter-Spira C; Bouwmeester HJ; Lovisolo C; Cardinale F
    Planta; 2015 Jun; 241(6):1435-51. PubMed ID: 25716094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Whats, the Wheres and the Hows of strigolactone action in the roots.
    Matthys C; Walton A; Struk S; Stes E; Boyer FD; Gevaert K; Goormachtig S
    Planta; 2016 Jun; 243(6):1327-37. PubMed ID: 26895337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the outside looking in: roles of endogenous and exogenous strigolactones.
    Aquino B; Bradley JM; Lumba S
    Plant J; 2021 Jan; 105(2):322-334. PubMed ID: 33215770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strigolactones shape the assembly of root-associated microbiota in response to phosphorus availability.
    Chen P; Huang P; Yu H; Yu H; Xie W; Wang Y; Zhou Y; Chen L; Zhang M; Yao R
    mSystems; 2024 Jun; 9(6):e0112423. PubMed ID: 38780241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses.
    Yang T; Lian Y; Wang C
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31842355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.