These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 29954330)

  • 1. Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis.
    Mei S; Flemington EK; Zhang K
    BMC Genomics; 2018 Jun; 19(1):505. PubMed ID: 29954330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Enhancing M. tuberculosis Protein Interaction Networks in STRING To Predict Drug-Resistance Pathways and Pharmacological Risks.
    Mei S
    J Proteome Res; 2018 May; 17(5):1749-1760. PubMed ID: 29611419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Gao S; Nguyen NN; Fan M; Jin J; Liu B; Zhao L; Xiong G; Tan M; Li S; Wong L
    Biol Direct; 2014 Apr; 9():5. PubMed ID: 24708540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods.
    Zhang YW; Lin Y; Yu HY; Tian RN; Li F
    Int J Mol Med; 2019 Oct; 44(4):1243-1254. PubMed ID: 31364746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic analysis of THP-1-derived macrophages infected with Mycobacterium tuberculosis H37Rv, H37Ra and BCG.
    Pu W; Zhao C; Wazir J; Su Z; Niu M; Song S; Wei L; Li L; Zhang X; Shi X; Wang H
    J Cell Mol Med; 2021 Nov; 25(22):10504-10520. PubMed ID: 34632719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions.
    Sun J; Yang LL; Chen X; Kong DX; Liu R
    J Proteome Res; 2018 Nov; 17(11):3810-3823. PubMed ID: 30269499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach.
    Bose T; Das C; Dutta A; Mahamkali V; Sadhu S; Mande SS
    BMC Genomics; 2018 Jul; 19(1):555. PubMed ID: 30053801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection.
    Li CW; Lee YL; Chen BS
    Front Cell Infect Microbiol; 2016; 6():124. PubMed ID: 27803888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved understanding of pathogenesis from protein interactions in Mycobacterium tuberculosis.
    Cui T; He ZG
    Expert Rev Proteomics; 2014 Dec; 11(6):745-55. PubMed ID: 25327725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering New Pathogen-Host Protein-Protein Interactions by Pairwise Structure Similarity.
    Cui T; Li W; Liu L; Huang Q; He ZG
    PLoS One; 2016; 11(1):e0147612. PubMed ID: 26799490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs.
    Huo T; Liu W; Guo Y; Yang C; Lin J; Rao Z
    BMC Bioinformatics; 2015 Mar; 16(1):100. PubMed ID: 25887594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection.
    Mohareer K; Asalla S; Banerjee S
    Tuberculosis (Edinb); 2018 Dec; 113():99-121. PubMed ID: 30514519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv.
    Wang Y; Cui T; Zhang C; Yang M; Huang Y; Li W; Zhang L; Gao C; He Y; Li Y; Huang F; Zeng J; Huang C; Yang Q; Tian Y; Zhao C; Chen H; Zhang H; He ZG
    J Proteome Res; 2010 Dec; 9(12):6665-77. PubMed ID: 20973567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico unravelling pathogen-host signaling cross-talks via pathogen mimicry and human protein-protein interaction networks.
    Mei S; Zhang K
    Comput Struct Biotechnol J; 2020; 18():100-113. PubMed ID: 31956393
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Hkimi C; Kamoun S; Khamessi O; Ghedira K
    J Med Microbiol; 2024 Feb; 73(2):. PubMed ID: 38314675
    [No Abstract]   [Full Text] [Related]  

  • 17. From workstations to workbenches: Towards predicting physicochemically viable protein-protein interactions across a host and a pathogen.
    Ramakrishnan G; Chandra NR; Srinivasan N
    IUBMB Life; 2014 Nov; 66(11):759-74. PubMed ID: 25512108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting and analyzing interactions between Mycobacterium tuberculosis and its human host.
    Rapanoel HA; Mazandu GK; Mulder NJ
    PLoS One; 2013; 8(7):e67472. PubMed ID: 23844013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hi-Jack: a novel computational framework for pathway-based inference of host-pathogen interactions.
    Kleftogiannis D; Wong L; Archer JA; Kalnis P
    Bioinformatics; 2015 Jul; 31(14):2332-9. PubMed ID: 25758402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.