These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29954538)

  • 1. Enhancing Mechanical Properties of Flexible Graphene/ Cellulose Conductive Paper by Chemically Modifying Cellulose Fibers.
    Xiao X; Zhang H; Fang Z; Wang Q
    J Nanosci Nanotechnol; 2018 Oct; 18(10):7090-7094. PubMed ID: 29954538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of cellulose/graphene paper as a stable-cycling anode materials without collector.
    Zhang C; Cha R; Yang L; Mou K; Jiang X
    Carbohydr Polym; 2018 Mar; 184():30-36. PubMed ID: 29352923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-conductivity, stable Ag/cellulose paper prepared via in situ reduction of fractal-structured silver particles.
    Zhang S; Hua C; He B; Chang P; Du M; Liu Y
    Carbohydr Polym; 2021 Jun; 262():117923. PubMed ID: 33838802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.
    Gao K; Shao Z; Wu X; Wang X; Li J; Zhang Y; Wang W; Wang F
    Carbohydr Polym; 2013 Aug; 97(1):243-51. PubMed ID: 23769544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.
    Kang YR; Li YL; Hou F; Wen YY; Su D
    Nanoscale; 2012 May; 4(10):3248-53. PubMed ID: 22535335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles.
    Yang Y; Huang Q; Payne GF; Sun R; Wang X
    Nanoscale; 2019 Jan; 11(2):725-732. PubMed ID: 30565620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.
    Koga H; Saito T; Kitaoka T; Nogi M; Suganuma K; Isogai A
    Biomacromolecules; 2013 Apr; 14(4):1160-5. PubMed ID: 23428212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-exfoliation and fabrication of graphene based microfibrillated cellulose composites - mechanical and thermal stability and functional conductive properties.
    Phiri J; Johansson LS; Gane P; Maloney TC
    Nanoscale; 2018 May; 10(20):9569-9582. PubMed ID: 29745947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically Enhanced Nanocrystalline Cellulose/Reduced Graphene Oxide/Polyethylene Glycol Electrically Conductive Composite Film.
    Xie P; Ge Y; Wang Y; Zhou J; Miao Y; Liu Z
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-Induced Graphene from Paper for Mechanical Sensing.
    Kulyk B; Silva BFR; Carvalho AF; Silvestre S; Fernandes AJS; Martins R; Fortunato E; Costa FM
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10210-10221. PubMed ID: 33619955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
    Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y
    Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topological Design of Ultrastrong and Highly Conductive Graphene Films.
    Wen Y; Wu M; Zhang M; Li C; Shi G
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28892207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics.
    Kafy A; Kim HC; Zhai L; Kim JW; Hai LV; Kang TJ; Kim J
    Sci Rep; 2017 Dec; 7(1):17683. PubMed ID: 29247191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose-Based Conductive Materials for Energy and Sensing Applications.
    Wang DC; Lei SN; Zhong S; Xiao X; Guo QH
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Graphene Conductive Ink with 73 wt% Graphene Contents.
    Xu CY; Shi XM; Guo L; Wang X; Wang XY; Li JY
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4014-4021. PubMed ID: 29442738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications.
    Cao J; Zhang X; Wu X; Wang S; Lu C
    Carbohydr Polym; 2016 Apr; 140():88-95. PubMed ID: 26876831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel structural design of cellulose-based conductive composite fibers for wearable e-textiles.
    Liu W; Liu H; Zhao Z; Liang D; Zhong WH; Zhang J
    Carbohydr Polym; 2023 Dec; 321():121308. PubMed ID: 37739538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green Fabrication of Highly Conductive Paper Electrodes via Interface Engineering with Aminocellulose.
    Yang Y; Huang Q; Ge W; Ren J; Heinze T; Wang X
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000499. PubMed ID: 33200482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.