These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29954835)

  • 1. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts.
    Thomas RA; Metzen MG; Chacron MJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29954835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.
    Metzen MG; Chacron MJ
    J Exp Biol; 2014 Apr; 217(Pt 8):1381-91. PubMed ID: 24363423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.
    Stamper SA; Madhav MS; Cowan NJ; Fortune ES
    J Exp Biol; 2012 Dec; 215(Pt 23):4196-207. PubMed ID: 23136154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception and coding of envelopes in weakly electric fishes.
    Stamper SA; Fortune ES; Chacron MJ
    J Exp Biol; 2013 Jul; 216(Pt 13):2393-402. PubMed ID: 23761464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral responses to jamming and 'phantom' jamming stimuli in the weakly electric fish Eigenmannia.
    Carlson BA; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Sep; 193(9):927-41. PubMed ID: 17609965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species.
    Martinez D; Metzen MG; Chacron MJ
    J Neurophysiol; 2016 Dec; 116(6):2909-2921. PubMed ID: 27683890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coding conspecific identity and motion in the electric sense.
    Yu N; Hupé G; Garfinkle C; Lewis JE; Longtin A
    PLoS Comput Biol; 2012; 8(7):e1002564. PubMed ID: 22807662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish.
    Metzen MG; Hofmann V; Chacron MJ
    Elife; 2016 Apr; 5():. PubMed ID: 27128376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
    Savard M; Krahe R; Chacron MJ
    Neuroscience; 2011 Jan; 172():270-84. PubMed ID: 21035523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus.
    Engler G; Zupanc GK
    J Comp Physiol A; 2001 Nov; 187(9):747-56. PubMed ID: 11778836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus.
    Eske AI; Lehotzky D; Ahmed M; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):437-457. PubMed ID: 36799986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.
    Dunlap KD; Ragazzi MA
    Physiol Behav; 2015 Nov; 151():64-71. PubMed ID: 26143349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric sense of weakly electric fish.
    Heiligenberg W; Bastian J
    Annu Rev Physiol; 1984; 46():561-83. PubMed ID: 6324664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio.
    Vazquez JI; Gascue V; Quintana L; Migliaro A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jan; 210(1):7-18. PubMed ID: 37002418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation and modulation of electric waveforms in gymnotiform electric fish.
    Stoddard PK; Zakon HH; Markham MR; McAnelly L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):613-24. PubMed ID: 16437223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.