These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29955976)

  • 1. On the effect of the thermostat in non-equilibrium molecular dynamics simulations.
    Ruiz-Franco J; Rovigatti L; Zaccarelli E
    Eur Phys J E Soft Matter; 2018 Jul; 41(7):80. PubMed ID: 29955976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of dissipative particle dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems.
    Pastorino C; Kreer T; Müller M; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026706. PubMed ID: 17930173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics.
    Yong X; Zhang LT
    J Chem Phys; 2013 Feb; 138(8):084503. PubMed ID: 23464156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-forward Langevin dynamics with momentum flips.
    Hijazi M; Wilkins DM; Ceriotti M
    J Chem Phys; 2018 May; 148(18):184109. PubMed ID: 29764135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations.
    Heo S; Sinnott SB
    J Nanosci Nanotechnol; 2007; 7(4-5):1518-24. PubMed ID: 17450920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic simulations of colloids by core-modified dissipative particle dynamics.
    Whittle M; Travis KP
    J Chem Phys; 2010 Mar; 132(12):124906. PubMed ID: 20370149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative particle dynamics for coarse-grained models.
    Curk T
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint.
    Bright JN; Evans DJ; Searles DJ
    J Chem Phys; 2005 May; 122(19):194106. PubMed ID: 16161562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations.
    Basconi JE; Shirts MR
    J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations.
    Passler PP; Hofer TS
    J Comput Chem; 2017 Feb; 38(5):265-275. PubMed ID: 27888515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Langevin and gradient thermostats for rigid body dynamics.
    Davidchack RL; Ouldridge TE; Tretyakov MV
    J Chem Phys; 2015 Apr; 142(14):144114. PubMed ID: 25877569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing numerical methods for molecular and particle simulation.
    Shang X; Kröger M; Leimkuhler B
    Soft Matter; 2017 Nov; 13(45):8565-8578. PubMed ID: 29099134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further cautionary tales on thermostatting in molecular dynamics: Energy equipartitioning and non-equilibrium processes in gas-phase simulations.
    Halonen R; Neefjes I; Reischl B
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats.
    Mor A; Ziv G; Levy Y
    J Comput Chem; 2008 Sep; 29(12):1992-8. PubMed ID: 18366022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.
    Page AJ; Isomoto T; Knaup JM; Irle S; Morokuma K
    J Chem Theory Comput; 2012 Nov; 8(11):4019-28. PubMed ID: 26605569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galilean-invariant Nosé-Hoover-type thermostats.
    Pieprzyk S; Heyes DM; Maćkowiak S; Brańka AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033312. PubMed ID: 25871251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostat for nonequilibrium multiparticle-collision-dynamics simulations.
    Huang CC; Varghese A; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013310. PubMed ID: 25679742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain.
    Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA
    J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarizable molecular dynamics simulations of ionic liquids: Influence of temperature control.
    Heid E; Boresch S; Schröder C
    J Chem Phys; 2020 Mar; 152(9):094105. PubMed ID: 33480729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.