These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29955985)

  • 1. Dew-induced transpiration suppression impacts the water and isotope balances of Colocasia leaves.
    Gerlein-Safdi C; Gauthier PPG; Caylor KK
    Oecologia; 2018 Aug; 187(4):1041-1051. PubMed ID: 29955985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring foliar water uptake using stable isotopes of water.
    Goldsmith GR; Lehmann MM; Cernusak LA; Arend M; Siegwolf RTW
    Oecologia; 2017 Aug; 184(4):763-766. PubMed ID: 28735456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition of stable isotope ratios of leaf water under simulated dew formation.
    Kim K; Lee X
    Plant Cell Environ; 2011 Oct; 34(10):1790-801. PubMed ID: 21675999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation?
    Holanda AER; Souza BC; Carvalho ECD; Oliveira RS; Martins FR; Muniz CR; Costa RC; Soares AA
    Plant Biol (Stuttg); 2019 Nov; 21(6):1097-1109. PubMed ID: 31251437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dew water-uptake pathways in Negev desert plants: a study using stable isotope tracers.
    Hill AJ; Dawson TE; Dody A; Rachmilevitch S
    Oecologia; 2021 Jun; 196(2):353-361. PubMed ID: 34008141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Burgess SS; Oliveira RS
    Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.
    Simonin KA; Roddy AB; Link P; Apodaca R; Tu KP; Hu J; Dawson TE; Barbour MM
    Plant Cell Environ; 2013 Dec; 36(12):2190-206. PubMed ID: 23647101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hydrogen and oxygen stable isotope characteristics of water in SPAC system of evergreen broadleaved forest in subtropical region].
    Li L; Tang CY; Cao YJ
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):2875-2884. PubMed ID: 33345488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.
    Song X; Simonin KA; Loucos KE; Barbour MM
    Plant Cell Environ; 2015 Dec; 38(12):2618-28. PubMed ID: 25993893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Lima AL; Oliveira RS
    New Phytol; 2013 Jul; 199(1):151-162. PubMed ID: 23534879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variations in water flux compositions controlled by leaf development: isotopic insights at the canopy-atmosphere interface.
    Wang P; Sun H; Li XY; Song X; Yang X; Wu X; Hu X; Yao H; Ma J; Ma J
    Int J Biometeorol; 2021 Oct; 65(10):1719-1732. PubMed ID: 33851245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foliar water uptake in arid ecosystems: seasonal variability and ecophysiological consequences.
    Cavallaro A; Carbonell Silleta L; Pereyra DA; Goldstein G; Scholz FG; Bucci SJ
    Oecologia; 2020 Jun; 193(2):337-348. PubMed ID: 32474806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf water
    Gerlein-Safdi C; Gauthier PPG; Sinkler CJ; Caylor KK
    Plant Cell Environ; 2017 Oct; 40(10):2095-2108. PubMed ID: 28658718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water taken up through the bark is detected in the transpiration stream in intact upper-canopy branches.
    Gimeno TE; Stangl ZR; Barbeta A; Saavedra N; Wingate L; Devert N; Marshall JD
    Plant Cell Environ; 2022 Nov; 45(11):3219-3232. PubMed ID: 35922889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foliar water uptake in Amazonian trees: Evidence and consequences.
    Binks O; Mencuccini M; Rowland L; da Costa ACL; de Carvalho CJR; Bittencourt P; Eller C; Teodoro GS; Carvalho EJM; Soza A; Ferreira L; Vasconcelos SS; Oliveira R; Meir P
    Glob Chang Biol; 2019 Aug; 25(8):2678-2690. PubMed ID: 31012521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China.
    Wen XF; Lee X; Sun XM; Wang JL; Hu ZM; Li SG; Yu GR
    Oecologia; 2012 Feb; 168(2):549-61. PubMed ID: 21822725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.
    Limm EB; Simonin KA; Bothman AG; Dawson TE
    Oecologia; 2009 Sep; 161(3):449-59. PubMed ID: 19585154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observed relationships between leaf H218O Péclet effective length and leaf hydraulic conductance reflect assumptions in Craig-Gordon model calculations.
    Loucos KE; Simonin KA; Song X; Barbour MM
    Tree Physiol; 2015 Jan; 35(1):16-26. PubMed ID: 25576755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment.
    Song X; Barbour MM; Farquhar GD; Vann DR; Helliker BR
    Plant Cell Environ; 2013 Jul; 36(7):1338-51. PubMed ID: 23305086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton.
    Song X; Loucos KE; Simonin KA; Farquhar GD; Barbour MM
    New Phytol; 2015 Apr; 206(2):637-46. PubMed ID: 25643590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.